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 SUMMARY 

This dissertation addresses the development of integrative modeling strategies 

capable of combining deterministic and stochastic, discrete and continuous, as well as 

multi-scale features. The first set of studies combines the purely deterministic modeling 

methodology of Biochemical Systems Theory (BST) with a hybrid approach, using 

Functional Petri Nets, which permits the account of discrete features or events, 

stochasticity, and different types of delays. The efficiency and significance of this 

combination is demonstrated with several examples, including generic biochemical 

networks with feedback controls, gene regulatory modules, and dopamine based neuronal 

signal transduction.  

A study expanding the use of stochasticity toward systems with small numbers of 

molecules proposes a rather general strategy for converting a deterministic process model 

into a corresponding stochastic model. The strategy characterizes the mathematical 

connection between a stochastic framework and the deterministic analog. The 

deterministic framework is assumed to be a generalized mass action system and the 

stochastic analogue is in the format of the chemical master equation. The analysis identifies 

situations where internal noise affecting the system needs to be taken into account for a 

valid conversion from a deterministic to a stochastic model. The conversion procedure is 

illustrated with several representative examples, including elemental reactions, 

Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic focusing. 

The last study establishes two novel, particle-based methods to simulate 

biochemical diffusion-reaction systems within crowded environments. These simulation 

methods effectively simulate and quantify crowding effects, including reduced reaction 

volumes, reduced diffusion rates, and reduced accessibility between potentially reacting 



 xvii

particles. The proposed methods account for fractal-like kinetics, where the reaction rate 

depends on the local concentrations of the molecules undergoing the reaction. Rooted in 

an agent based modeling framework, this aspect of the methods offers the capacity to 

address sophisticated intracellular spatial effects, such as macromolecular crowding, 

active transport along cytoskeleton structures, and reactions on heterogeneous surfaces, 

as well as in porous media. 

Taken together, the work in this dissertation successfully develops theories and 

simulation methods which extend the deterministic, continuous framework of 

Biochemical Systems Theory to allow the account of delays, stochasticity, discrete 

features or events, and spatial effects for the modeling of biological systems, which are 

hybrid and multiscale by nature. 
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CHAPTER 1  

INTRODUCTION 

 

1. Overall goal and specific aims of hybrid modeling 
 
Most biological systems are by nature hybrids consisting of interacting discrete and 

continuous components, which may even operate at different spatiotemporal scales. It is 

therefore desirable to establish modeling frameworks that are capable of combining 

deterministic and stochastic, discrete and continuous, as well as multi-scale features. An 

example for the need of such a combination is the investigation of integrated biological 

pathways that contain gene regulatory, metabolic and signaling components, some of 

which involve on-off decisions as well as stochastic effects imposed by heterogeneous 

environments. The implementation of an integrated hybrid system is not trivial because 

most software is limited to one or the other of the dichotomies above. It is also well 

recognized that hybrid systems are notoriously difficult to set up and analyze.  

The goal of this dissertation is to develop integrative modeling strategies that 

combine the purely deterministic modeling methodology of Biochemical Systems Theory 

(BST) with hybrid approaches, such as Petri Nets and Agent Based Modeling (ABM). 

The efficiency and significance of these combinations is demonstrated with different 

representative examples, such as generic biochemical networks with feedback controls, 

gene regulatory modules, and dopamine based neuronal signal transduction. The details 

of this work are structured according to the following specific aims, and presented in 

Chapters 2 to 6. The work in these chapters has been (or is being) published in 

professional journals and is reproduced in the published format. 
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Specific Aim 1: Implement BST in a hybrid functional Petri net (HFPN) framework.  

Chapter 2 extends BST to hybrid modeling within the framework of Hybrid 

Functional Petri Nets (HFPN). First I show how the canonical GMA and S-system 

models in BST can be directly implemented in a standard Petri Net framework. In a 

second step I demonstrate how to account for different types of time delays as well as 

for discrete, stochastic and switching effects. Using representative test cases, I 

validate the hybrid modeling approach through comparative analyses and simulations 

with other approaches and highlight the feasibility, quality and efficiency of the 

hybrid method. Continuing in Chapter 3, by using the example of a toggle switch, I 

demonstrate the flexibility of this hybrid modeling framework through two modeling 

approaches. Moreover, some significant challenges and future opportunities in hybrid 

modeling are discussed. 

 

Specific Aim 2: Build hybrid model for dopamine based neuronal signal 

transduction.  

Utilizing the methods developed in Specific Aim 1, a hybrid model for dopamine based 

neuronal signal transduction is established in Chapter 4. Dopamine is a critical 

neurotransmitter for the normal functioning of the central nervous system. Abnormal 

dopamine signal transmission in the brain has been implicated in diseases such as 

Parkinson’s disease (PD) and schizophrenia, as well as in various types of drug addiction. 

It is therefore important to understand the dopamine signaling dynamics in the 

presynaptic neuron of the striatum and the synaptic cleft, where dopamine synthesis, 

degradation, compartmentalization, release, reuptake, and numerous regulatory processes 

occur. The biochemical and biological processes governing this dynamics consist of 

interacting discrete and continuous components, operate at different time scales, and must 

function effectively in spite of intrinsic stochasticity and external perturbations. Not 
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fitting into the realm of purely deterministic phenomena, the hybrid nature of the system 

requires special means of mathematical modeling, simulation and analysis. I show in this 

part of the dissertation how hybrid functional Petri-nets (HFPNs) and the software Cell 

Illustrator® facilitate computational analyses of systems that simultaneously contain 

deterministic, stochastic, and delay components. I evaluate the robustness of dopamine 

signaling in the presence of delays and noise and discuss implications for normal and 

abnormal states of the system. 

 

Specific Aim 3: Mathematical foundation and method to construct stochastic models 

from deterministic process equations. 

Chapter 5 discusses a rather general strategy for converting a deterministic process model 

into a corresponding stochastic model. The strategy characterizes the mathematical 

connection between a stochastic framework and the deterministic analog. The 

deterministic framework is assumed to be a generalized mass action system and the 

stochastic analogue is in the format of the chemical master equation. The analysis identifies 

situations where internal noise affecting the system needs to be taken into account for a 

valid conversion from a deterministic to a stochastic model. The conversion procedure is 

illustrated with several representative examples, including elemental reactions, 

Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic focusing. 

 

Specific Aim 4: Develop ABM methods for investigating biochemical reactions in 

heterogeneous intracellular environments.  

Chapter 6 establishes two novel, particle-based methods to simulate biochemical 

diffusion-reaction systems within crowded environments. These simulation methods 

effectively simulate and quantify crowding effects, including reduced reaction volumes, 

reduced diffusion rates, and reduced accessibility between potentially reacting particles. 

The proposed methods account for fractal-like kinetics, where the reaction rate depends 
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on the local concentrations of the molecules undergoing the reaction. Rooted in an agent 

based modeling framework, this aspect of the methods offers the capacity to address 

sophisticated intracellular spatial effects, such as macromolecular crowding, active 

transport along cytoskeleton structures, and reactions on heterogeneous surfaces, as well 

as in porous media. 

 

 

2. Background and Significance 

 

2.1. Biochemical Systems Theory; GMA Systems and S-systems  

Modeling a network requires a sufficiently accurate, mathematically feasible description 

of all critical components and their interactions. Two “extreme” conceptual frameworks 

for mathematical pathway modeling that are commonly used are: a) Deterministic kinetic 

models, represented by differential equations and often formulated as generalized mass 

action systems, where reaction rates depend continuously on changes in the participating 

species over time. b) Stochastic models and simulations of biochemical reaction networks 

ultimately based on the Chemical Master Equation (Gillespie 2007) for homogeneous 

systems and Reaction Diffusion Master Equation for heterogeneous ones.  Among the 

deterministic models, Biochemical Systems Theory (BST) is one of the best established 

and most general modeling frameworks (Savageau 1969 a; Savageau 1969 b; Savageau 

1976; Voit 2000). The basis of BST is the use the power-law functions to approximate 

enzyme-catalyzed reactions that may be regulated or modulated by other components of 

the system under study. Canonical methods have been developed for representations such 

as S-systems and Generalized Mass Action (GMA) models within BST. These 

representations have the formats shown in Figure 1. 
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 Figure 1.1 Representations of a biochemical reaction. Upper panel: generic model; middle panel: GMA 

system; lower panel: S-system. 

  

A GMA model is based on a multivariate power-law representation that may be 

developed de novo or as an approximation of some other nonlinear rate laws. Formulated 

as shown in Fig.1, the rate of change within a specific pool Xj, which could represent a 

gene activity, metabolite, or protein level, is determined by the difference between 

incoming (production) fluxes and outgoing (degradation) fluxes. Each incoming or 

outgoing flux is individually represented by a product of power-law functions. The rate 

constants γip are positive or zero and the kinetic orders fipj have real values; both types of 

parameters are to be estimated from observations. The positive terms represent the 

production of pool Xj, while negative terms describe degradation. 

 

While a GMA model requires each input or output flux to be represented by one 

power-law term, an S-system model combines all input fluxes into one power-law term 

and all the output fluxes into a second term, with the result that S-system equations 

contain at most one positive and one negative power-law term. This difference in format 

leads to differences in mathematical features, which have been compared and discussed 

many times (e.g., (Voit 2000)).  A main advantage of the GMA format is its closeness to 

biological intuition, because each process is mapped, one-to-one, onto a specific 

mathematical term.  The aggregation of terms in the S-system format somewhat clouds 
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this intuition, but has significant mathematical advantages, such as the algebraic 

computability of steady states, along with straightforward methods of stability and 

sensitivity analysis (Savageau 1969 b; Savageau 1976). I will use the GMA format in the 

following illustrations.   

 

The translation of a graphical pathway representation into a GMA model is 

straightforward. Consider any dependent variable Xi in the pathway map. The arrows 

pointing toward Xi represent the flows of material contributing to the production of Xi. 

For each entering flow, one lists all variables that directly affect the flow (by contributing 

material or a signal), which enter the power law term of Xi, with their own kinetic order 

fipj.   The first index of the kinetic order i refers to the dependent variable being produced, 

the second index p refers to the index of the flow, and the third index j refers to the 

variable contributing to the production. The rate constant γip is included after all variables 

are listed as a product. The degradation of Xi is formulated in the same way. The 

construction of equations is repeated for all dependent variables. Finally, the initial values 

of the dependent variables, values for all independent variables, and all rate constants and 

kinetic orders need to be set.  

 

Other biological formalisms based on ordinary differential equations (ODEs) have 

been developed for pathway representation and simulation, including mass action, lin-log 

(Hatzimanikatis and Bailey 1996; Visser and Heijnen 2002), and SC methods (Albert, 

Benito et al. 2007). Their translation into Petri Nets and ABM is similar, and I will focus 

here exclusively on BST models. Among differently structured types of approaches of 

network analysis, Boolean methods (Kauffman, Peterson et al. 2003), graph methods 

(Aittokallio and Schwikowski 2006), and Petri Nets (Chaouiya 2007) have received some 

attention.  Since Boolean methods do not appropriately represent cycles or feedback and 

graph methods usually require linearity, I will not pursue these approaches. Moreover, 
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partial differential equations (PDE) have been used to describe the spatial distribution of 

species or force fields; however, it is very difficult to account for biologically 

commonplace spatial effects such as macromolecular crowding and highly structured 

intracellular environments. Therefore, I will use agent based modeling, which offers a 

very flexible approach to addressing these complicated spatial effects.  

 

In the following chapters, I will show in a hierarchical fashion how to include 

delays,  discrete features or events, stochasticity and spatial effects into an initial ODE 

based model. The sequence of models will be: 

• ODEs 

• ODEs with delays 

• HFPN framework to include delays, discrete features or events and 

stochasticity 

• ABM framework to include delays, discrete features or events, 

stochasticity and spatial effects 

 

2.2. Hybrid Functional Petri Net (HFPN) 

A Petri Net is a graphical and mathematical formalism for systems with concurrent 

processes and properties that may be continuous or discrete.  Petri Nets have been applied 

to such diverse disciplines as manufacturing and communication (Reisig 1985) and were 

apparently first applied to biological systems by Reddy and collaborators in 1993 (Reddy, 

Mavrovouniotis et al. 1993).   To meet various needs, Petri Nets have been extended into 

different directions: Stochastic Petri Nets include randomness; Colored Petri Nets add a 

color feature to tokens and thus allow, in the same model, the representation of different 

dynamic behaviors that are modeled by different token colors; Hybrid Petri Nets allow 

the simultaneous investigation of discrete and continuous processes; Functional Petri 

Nets permit dynamic modifications of system parameters. Hardy and Robillard (Hardy 
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and Robillard 2004) recently reviewed the advantages of specific Petri Net formalisms 

for qualitative or quantitative analyses. Of particular importance here is the Hybrid 

Functional Petri Net (HFPN) format. 

 

 
 

Figure 1.2 An illustrative HFPN model of transcription and translation (as depicted in Cell Illustrator 

(Miyano 2008)). Test arcs are used as input arcs because DNA (mRNA) is not consumed by the process of 

transcription (translation). The effect of a repressor element is described by an inhibitory arc. Here m1 is 

the number of DNA molecules with initial value 7; m2 is the mRNA concentration with initial value 5.5; 

m3 is the protein concentration with initial value 14,400; m4 is the repressor concentration with initial value 

1.2. The discrete transition p1 represents the transcription, which is fired with the speed of 22·m1 per time 

unit and with delay 33; the continuous transition p2 describes the translation and is fired with speed 12·m2 

per time unit. Translation occurs only if the mRNA concentration m2 is greater than or equals to the test arc 

weight 4.5 and if the repressor concentration m4 is less than or equal to the inhibitory arc weight 2.0. (from 

(Wu and Voit 2009 a)) 

 

HFPN is an extended functional Petri Net that accounts for both discrete and 

continuous events within the same model system (Matsuno, Tanaka et al. 2003) and has 

been implemented in the software package Cell Illustrator (Miyano 2008). HFPN consists 

of three types of process elements: places, transitions, and arcs (Figure 2). Places appear 

graphically as single (discrete type) or double (continuous type) lined circles that 

represent the states of the modeled system. In terms of biochemical pathways, places 

usually represent molecular species such as chemical substrates or enzymes. A discrete 

place contains an integer number of tokens which represents the number of molecules, 
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while a continuous place contains a positive real number representing the substrate 

concentration. The number of tokens in discrete places and the concentration in 

continuous places define the marking of the system. Transitions (filled or empty 

rectangles) represent (discrete or continuous) actions of the modeled system, such as 

biochemical reactions, protein binding, transcription, translation, or translocation. Both 

types of transitions have the property speed, which is a function of the marking of the 

system, whereas only a discrete transition has the property delay, which quantifies the 

time interval between consequent tokens to be processed by the transition. An arc is used 

to connect a place with a transition. (It is not allowed to use an arc to connect between 

places or between transitions.) An arc from a place to a transition is called an input arc, 

and one from a transition to a place is called an output arc. There are three types of arcs: 

normal, inhibitory, and testing. All three types of arcs may be used as input arcs, while 

only a normal arc is allowed to be used as an output arc. Each arc has the property 

weight, which is the minimum amount of flux required for the arc to function. A 

transition is enabled only if the content in all source places (there may be only one source 

place) is equal to or exceeds the weight of the input arc(s). When a transition is fired, the 

content in each source place is taken off the arc weight amount and, through a normal arc, 

the output arc weight amount of content is added to each sink place. An inhibitory arc 

with weight w enables a transition to fire only if the content of the source place is less 

than or equal to w. For instance, an inhibitory arc can be used to represent a repressor in 

gene regulation. A test arc does not consume any content of the source place by firing, 

but is used, for instance, to represent an enzyme catalyzing a reaction without being 

consumed (Figure 1.2). 
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2.3. Agent Based Modeling in Systems Biology 

Agent based modeling (ABM) is a rule-based computational modeling methodology 

where the constituents of a real system are treated as unique individuals (called agents) 

residing in an environment where agents interact with one another and with the 

environment by specific if-then rules, thereby allowing complex system behaviors to be 

generated in a very intuitive manner (Bankes 2002; Bonabeau 2002; Grimm, Revilla et 

al. 2005).  

One important, generic goal of systems biology is to understand how the 

interactions of microscopic components in a biological system can give rise to a system’s 

macroscopic functioning and behavior. In contrast to the paradigm of reductionism which 

attempts to reduce a phenomenon to a set of fundamental components by “taking things 

apart,” systems biology focuses on how system level properties emerge from the 

interactions of individuals by “putting things together.” Thus, a central piece of systems 

biology is to integrate in vitro and in vivo biological data into mathematical or 

computational models in order to achieve a comprehensive and unified understanding of 

the biological phenomenon. While many analytical methods focus on characterizing the 

equilibria of systems, ABM allows investigations of how these equilibria are generated 

and is in some way complementary to strictly analytical methods. More specifically, the 

following characteristics of systems biology are directly in line with the ABM 

philosophy, making ABM an appealing modeling framework for the development, 

analysis and utilization of systems models.  

 

1. Complexity. Systems biology investigates biological systems which are by nature 

complex in structure, function, dynamical history and environments. For instance, 

intracellular biochemical reactions often occur in a non-homogeneous and highly 

structured environment; enzymatic biochemical reactions frequently occur at the surface 

of intracellular organelles, instead of a homogeneous 3D space that is present in vitro; the 



 11

function of proteins is affected by their spatial conformation and location and thus highly 

sensitive to effects of macromolecular crowding. The complexity in systems modeling 

can be addressed in ABM as follows:    

 

Structural complexity: Besides defining local interaction rules at the individual level, 

ABM is capable of imposing constraints on parts of the system or the whole system, thus 

allowing maximum control on system structure specification.  

 

Functional complexity: The interaction rules for agents can be made up of thousands of 

lines of computational script, thereby enabling agents to achieve sophisticated 

functionality such as memory and adaptation. Expressed differently, what an agent can do 

is determined by the modeling objectives, and the flexibility in interaction rule 

specification can lead to distinctly different levels of functional abstractions.  

 

Dynamical complexity: Agents are equipped with state variables, each of which is a 

specific function of the agent and its interaction history. Therefore an agent’s current 

behavior depends on its unique history. Moreover, the congregated behaviors of all 

agents give rise to the system’s history, which in turn can feed back to restrain the current 

behavior of an individual agent. ABM can record the dynamical history of both 

individual agents and the whole system, and therefore provides maximum capacity to 

interrogate, explain and understand the system dynamics.  

 

Environmental complexity:  ABMs allow for spatial features, and ABM software is often 

equipped with primitives for the construction of desired spatial structures. As a result, it 

is relatively easy even for non-experts to reconstruct a realistic reaction environment with 

complicated geometry and topology. Examples include a 2D surface with blocks 

positioned on it and a 3D space filled with microskeletons.  
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2. Emergence. Systems biology explores how novel properties, patterns and functions at 

the system level arise from dynamical interactions of relatively simple entities at lower 

levels. ABM specifies the interactions at the individual level as agent rules and 

instantiates the rules’ consequences by simulation. Compared with the traditional analytic 

methods, which focus on characterizing the behavioral patterns of a system, agent based 

models allow us to explore the possible causal factors generating these patterns or to test 

the veracity of a set of identified/presumed mechanisms in a system, thereby fitting the 

goal of systems biology.   

  

3. Integration. One major challenge for systems biology is the integration of biological 

data of multiple scales and formats into a single model to gain a comprehensive and 

unified understanding. These data can be qualitative as well as quantitative, thus making 

equation-based methods alone insufficient. The ABM framework is powerful for 

integration because it can incorporate a rule-based paradigm with an equation-based 

paradigm by assigning to agents if-then logical rules while updating the state variables of 

the environment or agent with equations. As illustrated by an ABM model of chemotaxis 

(Guo, Sloot et al. 2008), this feature also allows ABM to incorporate data of multiple 

scales. In this particular model, cells are modeled by agents while molecules are 

represented by variables, thereby successfully integrating the cell migration dynamics 

with a scale of micrometer per minute with molecular reaction-diffusion dynamics in the 

range of nanometers per millisecond. Because the behaviors of a system ultimately arise 

from the interactions among its constituents, and in turn feed back to restrain an 

individual’s dynamics, the ABM multi-scale capacity becomes very attractive, especially 

for continual integration of new research findings, as demanded by biological system 

modeling.   
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2.4. Significance of Extending BST to HFPN and ABM Hybrid 

Frameworks 

 

While BST models have been successfully applied in a variety of biological fields, their 

structure as systems of ordinary differential equations imposes limits on their scope.  The 

following issues cannot be directly modeled in BST (and the same is true for all other 

modeling approaches that are anchored in ordinary differential equations): discrete 

features or events, stochasticity, delays and spatial effects. The first three can be 

addressed by HFPN techniques and all of them can be represented in ABM, thereby 

making these hybrid frameworks significant for biological systems modeling. However, 

the advantages of HFPN and ABM do not come for free. In particular, it is extremely 

difficult to perform analytical tasks on rule-based ABM structures, and the 

characterization of features like stability, sensitivities, and bifurcations must rely on 

simulations. 

 

1. Discrete features or events.  In addition to continuous changes, biological systems are 

frequently exposed to external or internal switches.  In the former case, the environment 

may abruptly change, whereas an example for the latter is the turning on or off of the 

expression of some gene. External switches are easy to implement through a 

segmentation of the time scale, whereas internal switches are much more complicated 

because they depend on the internal state of the system and are therefore difficult to 

predict.  Modeling of hard internal switches thus requires some approximation with a 

“softened” continuous switch (Voit 2005) or if-then statements (Savageau 2001). By 

contrast, discrete features and if-then rules are native features of rule-based HFPN and 

ABM representations. 
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2. Stochasticity.  Most metabolic analyses implicitly assume that thousands of molecules 

are available to participate in an enzymatic reaction.  However, this is not necessarily the 

case if pathways outside the organism’s central metabolism are under investigation.  If 

only relatively few molecules are present, the assumptions underlying essentially all 

continuous rate laws are questionable. The kinetic conversions become strings of discrete 

events that happen randomly, with some (possibly time dependent) probability, and it 

seems that the dynamics is better formulated as a stochastic process. The best known 

formulation of this type of approach is Gillespie’s “stochastic simulation algorithm” 

(Gillespie 1977), which has triggered the development of numerous variations (Gillespie 

2000; Gillespie 2001; Gillespie 2001). Wolkenhauer (Wolkenhauer, Ullah et al. 2004) 

recently reviewed the progression of approximations, starting with a true stochastic 

process, via the Chemical Master Equations and Langevin’s formulation, and ultimately 

resulting in typical continuous rate laws. However, Gillespie methods do not address 

stochasticity resulting from spatial effects and the computational cost even for single 

reactions is substantial. It is therefore hardly feasible to implement realistic systems such 

as large metabolite networks in crowded intracellular environments. In HFPN, a random 

number generator and various probability functions are available, thereby allowing 

actualization of stochastic components, whether these are continuous (in the form of 

stochastic equations) or discrete. By contrast, stochasticity from both small numbers of 

reactants and environmental uncertainties can be naturally addressed by ABM: each 

reactant is represented by an agent and the perturbation from the environment can be 

incorporated into the agent’s interaction rules, such as the reaction probability between 

reacting agents.  

 

3. Delays.  All typical metabolic models assume that the reaction speed depends directly 

on the current state of the system.  In reality, there may be significant delays, for instance, 

between the up-regulation of a gene and its ultimate metabolic effect, or the reception of 
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an external signal and the effect of the transduced signal on genome expression. The 

natural choice for mathematically representing delays in continuous systems is the format 

of Delay Differential Equations (DDEs), whose theoretical foundation is well established 

(Hale and Lunel 1993). An impediment to the practical use of DDEs is the fact that their 

analysis requires specialized software, which is distinct from standard software for 

ODEs. Moreover, if delays are to be combined with discrete or stochastic effects, 

software for analysis is essentially lacking and must be designed from scratch. While 

models within BST consist entirely of ODEs, Mocek et al. showed that processes with a 

constant delay can be approximated with arbitrary accuracy within the BST format 

(Mocek, Rudnicki et al. 2005). This approximation is accomplished through the 

introduction of auxiliary variables and equations, which however do not require 

additional biological parameters. Wu and Voit further extended Mocek’s method to allow 

for multiple delays of different types, including discrete, distributed, time dependent, and 

random delays (Wu and Voit 2009 a; Wu and Voit 2009 b). For HFPN, a delay is an 

imbedded function for a discrete process, while delays in continuous processes can be 

implemented by the techniques for ODEs described above. Compared with equation 

based methods where delays need to be implemented by auxiliary processes, delays in 

ABM originate naturally, for instance, from the time needed by agents for migration 

(through diffusion or facilitated flow) and from agent interaction processes, since in an 

agent based model, agents mimic the real system constituents and their interactions 

mimic the real systems dynamics.   

 

4. Spatial Effects.  Most metabolic models assume spatial homogeneity, even though it is 

known that the organization of cells is highly compartmentalized. This is a very difficult 

problem, and even partial differential equation (PDE) models are not always appropriate, 

because the underlying mechanisms, such as active transport and the use of scaffolds, are 

intrinsically different from diffusion processes that are better amenable to PDE methods.  
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While HFPN can only deal with non-spatial issues, ABM was designed specifically to 

account for spatial heterogeneity as described in the previous sections. 

 

As soon as switches, delays, stochasticity and spatial effects are significant within 

the same system of interest, none of the traditional modeling frameworks are sufficient.  

However, it is desirable to address them concurrently within one package, for instance, to 

answer the question:  What is the significance of a delay in a stochastic system? This is 

not an artificially construed question, because it was recently shown, for instance, that 

although transcription may be highly erratic, metabolite levels are very well buffered 

(Ishii, Nakahigashi et al. 2007). Explanations of this observation require the simultaneous 

modeling of both, stochastic effects and time delays. Moreover, the stochastic effects 

originating from spatial features and from small number reactants have been known to 

incur important biological consequences. This complexity has been demonstrated with 

numerous examples, such as microtubule formation (Dogterom and Leibler 1993), 

ultrasensitive modification and de-modification reactions (Berg, Paulsson et al. 2000), 

plasmid copy number control (Paulsson and Ehrenberg 2001), noise-induced oscillations 

(Vilar, Kueh et al. 2002) and metabolite dynamics (Elf, Paulsson et al. 2003). I will show 

in the following how these types of questions can be addressed when I embed BST in 

HFPN and ABM frameworks. I use for all demonstrations the HFPN software Cell 

Illustrator® (Miyano 2008) and the ABM software Netlogo (Wilensky 1999).  While I 

primarily focus on BST, other ODE formulations could be addressed similarly. 
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Abstract  

Many biological systems are genuinely hybrids consisting of interacting discrete and 

continuous components and processes that often operate at different time scales. It is 

therefore desirable to create modeling frameworks capable of combining differently 

structured processes and permitting their analysis over multiple time horizons. During 

the past forty years, Biochemical Systems Theory (BST) has been a very successful 

approach to elucidating metabolic, gene regulatory and signaling systems.  However, 

its foundation in ordinary differential equations has precluded BST from directly 

addressing problems containing switches, delays, and stochastic effects. In this study, 

we extend BST to hybrid modeling within the framework of Hybrid Functional Petri 

Nets (HFPN). First we show how the canonical GMA and S-system models in BST 

can be directly implemented in a standard Petri Net framework. In a second step we 

demonstrate how to account for different types of time delays as well as for discrete, 

stochastic and switching effects. Using representative test cases, we validate the 
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hybrid modeling approach through comparative analyses and simulations with other 

approaches and highlight the feasibility, quality and efficiency of the hybrid method. 

Keywords: Biochemical Systems Theory; BST; Delay; Hybrid Functional Petri Nets; HFPN; Hybrid modeling; GMA system; 

Stochastic modeling; S-system. 

 

 

 

Integrative biology endeavors to understand how the components of biological systems 

interact and how these interactions give rise to emerging functions and behaviors at the 

systemic level.  Supporting this endeavor are experiments that produce comprehensive 

datasets at different levels of organization, including the genome, proteome, and 

metabolome, as well as novel computational techniques and the creation of innovative 

devices.  In some sense, the centerpiece of these diverse techniques is a mathematical 

model that utilizes the experimentally observed data and formulates them as theoretical 

structures that can be assessed and interpreted with computational means.  Corresponding 

to the predominantly reductionist methods of traditional experimental biology, 

mathematical models have in the past usually focused on a single biological level, such as 

gene expression or enzyme kinetics. As it is becoming possible to generate data that 

simultaneously shed light on several levels, models also have to be able to bridge 

between genomic, proteomic, metabolomic, and higher-order, physiological phenomena.  

A key challenge for such multi-level models is that processes tend to occur at different 

time scales and that effects due to stochasticity and time delays become so crucial that 

standard approximations are no longer valid. In this study, we propose a hybrid modeling 

methodology that allows combinations of deterministic and stochastic, discrete and 

continuous effects. The proposed hybrid approach uses features of classical dynamical 

modeling, based on ordinary differential equations (ODEs), and combines them with 

modeling strategies for discrete events and stochastic effects. Specifically, we use, as a 
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representative default for dynamical approaches in biology, the well-established 

modeling framework of Biochemical Systems Theory (BST) (Savageau 1969 a; Savageau 

1969 b; Savageau 1976; Voit 2000), which we extend here by embedding it into Hybrid 

Functional Petri Nets (HPFN) (Matsuno, Tanaka et al. 2003).  The result permits the 

simultaneous analysis of continuous, discrete, deterministic and stochastic processes 

along with different types of time delays. The hybrid approach is implemented in the 

software Cell Illustrator (Miyano 2008). We illustrate the proposed methodology with 

BST and other models that describe metabolic processes and gene regulatory networks. 

The same methods are similarly applicable to other levels of organization, from cellular 

to ecological systems. 

 

 

The construction of models for biological systems has traditionally occurred from the 

bottom up. Namely, individual processes were characterized biologically, then 

formulated mathematically, and finally all process descriptions were merged into a 

comprehensive differential equation model.  For instance, in the context of metabolic 

pathway systems, one measured the features of all catalyzing enzymes involved, 

translated them into Henri-Michaelis-Menten rate laws (Henri 1903; Michaelis and 

Menten 1913), and entered these rate laws as flux descriptions into dynamic models. 

Indeed, many in vitro studies have suggested that these types of rate laws are often 

reasonable representations. Nonetheless, while conceptually straightforward, this 

procedure of dynamic model construction often runs into discrepancies between observed 

and modeled behaviors at the systems level.  Some of the discrepancies are due to the 

lack of data, information originating from different organisms or experimental conditions, 

or invalid mathematical representations. In particular, if processes are more convoluted 

and not consistent with the assumptions underlying enzyme catalyzed mechanisms, no 

guidelines are available for even starting the modeling process.  

Methods 
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To remedy this situation, different types of approximations were explored over the years. 

It was clear that linear models would be of limited validity, because biological systems 

are seldom linear in their responses. Nonlinear approximation techniques yielded 

different types of “canonical models.” These provided strong, and badly needed, guidance 

for setting up model equations and identifying their parameters and suggested custom 

tailored techniques for numerical integration, diagnostics and interpretation. Furthermore, 

these canonical models allowed better insights into the functioning of complex systems 

and were easily scalable to larger systems with tens or hundreds of reactions, at least in 

principle. At this point, prominent canonical models in biology are Lotka-Volterra 

models in ecology (Lotka 1924; Volterra 1926; May 1976) and power-law models in 

molecular biology. Among the latter, BST (Savageau 1976; Voit 2000) have become in 

some sense a default, Although Metabolic Control Analysis is popular for steady-state 

analyses (Fell 1997) and has more recently been augmented with log-linear process 

descriptions for dynamic considerations (Hatzimanikatis and Bailey 1996; Visser and 

Heijnen 2002). Canonical models are no panacea, because they are based on 

approximations, which are by nature limited in their ranges of valid representations.  

However, all other models are approximations as well, and the challenge to the modeler 

is to select the most suitable model for a given situation. Thus, if a proven mechanistic 

model is at hand, and if it is mathematically and computationally tractable, it should 

probably be the top choice.  However, if no such model is a clear “winner” among the 

infinite possible mathematical structures, a canonical model is an excellent default, 

because it offers very specific guidelines for streamlined model design, diagnostics, 

model utilization, and the exploration of design and operating principles (Voit 2000). We 

focus here primarily on BST, because it is the most developed canonical modeling 

framework in molecular biology and because it lends itself to extensions, for instance, 
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with respect to delays. Nevertheless, we also show that the same philosophy of hybrid 

model construction may be applied to other dynamical modeling strategies. 

 

 

2.1 Biochemical systems theory (BST) 
 
The generic design of a BST model typically begins with a diagram showing all 

components, the fluxes of material between the components, and the regulatory effects 

that some of the components have on some of the processes in the system.  Focusing on 

one node Xi at a time, one lists all processes augmenting Xi and all processes degrading 

Xi.  Under the not very restrictive assumption that no changes happen within the node, a 

generic equation is directly obtained from the stoichiometry of the system and reads: 

 

               0(0)i i ij ij i i i idX dt X v v V V X X+ − + −= = − = − =∑ ∑�  .                   (1) 
   

 

With only slight variations, this general representation is the same for very many systems  

descriptions in biological systems analysis. The basis of BST is the use the power-law  

functions for the representation of the functions in Eq. 1. Thus, each process vij (or Vi) in  

Eq. 1 is represented in the generic format 

 

                                                       
1

,ij

n m
f

i i j
j

v Xγ
+

=

≈ ∏                                                      (2) 

 

where γi is the rate constant of the process and each kinetic order fij quantifies the effect 

the variable Xj has on the process vi.  If the effect is activating or augmenting, the kinetic 

order is positive.  If the effect is inhibiting or diminishing, the kinetic order is negative.  

If Xj has no effect on vi, fij is zero. While variables X1, …, Xn are state variables that may 
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change under the action of the system, the remaining variables Xn+1, …, Xn+m are 

independent variables that are independent of the dynamics of the system and that are 

usually constant. 

In the General Mass Action (GMA) representation within BST, each +
ijv  or −

ijv  is  

represented by a product of power-law functions, as indicated in Eq. 2, and the result is a  

system description in the format 

                      1 2

1 2
1 1 1

 ...  ...ij ij ijk

n m n m n m
f f f

i i j i j ik j
j j j

X X X Xγ γ γ
+ + +

= = =

= ± ± ± ±∏ ∏ ∏�  .              (3) 

As an alternative, all incoming and all outgoing processes +
ijv  or −

ijv  may be aggregated  

into one term each, given in Eq. 1 as iV + and iV − , respectively, which leads to the S- 

system format 

                                   
1 1

,ij ij

n m n m
g h

i i j i j
j j

X X Xα β
+ +

= =

= −∏ ∏�
 

               

GMA and S-system models have different mathematical features that have been  

compared and discussed many times (e.g., (Voit 2000)).  A main advantage of the GMA  

format is its closeness to biological intuition, because each process is mapped, one-to- 

one, onto a specific mathematical term.  The aggregation of terms in the S-system format  

somewhat clouds this intuition, but has significant mathematical advantages, such as the  

algebraic computability of steady states (Savageau 1969 b). We will use the GMA format  

in the following illustrations.   

 

BST models have been successfully applied in a variety of biological fields and also in  

non-biological areas (e.g., see (Voit 2000)).  Nonetheless, their structure as systems of  

ordinary differential equations imposes limits on their scope.  The following issues  

cannot be directly modeled in BST, and the same is true for all other modeling  

approaches that are anchored in ordinary differential equations. 
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1. Discrete events.  In addition to continuous changes, biological systems are frequently 

exposed to external or internal switches.  In the former case, the environment may 

abruptly change, whereas an example for the latter is the turning on or off of the 

expression of some gene.  External switches are easy to implement through a 

segmentation of the time scale, whereas internal switches are much more complicated 

because they depend on the internal state of the system and are therefore difficult to 

predict.  Modeling of hard internal switches thus requires if-statements (Savageau 2001) 

or some approximation with a “softened” continuous switch (Voit 2005).   

 

2. Stochasticity.  Most metabolic analyses implicitly assume that thousands of molecules 

are available to participate in an enzymatic reaction.  However, this is not necessarily the 

case if pathways outside the organism’s central metabolism are under investigation.  If 

only relatively few molecules are present, the assumptions underlying essentially all 

continuous rate laws are questionable. The kinetic conversions become strings of discrete 

events that happen randomly, with some (possibly time dependent) probability, and it 

seems that the dynamics is better formulated as a stochastic process. The best known 

formulation of this type of approach is Gillespie’s “stochastic simulation algorithm” 

(Gillespie 1977), which has triggered the development of numerous variations (Gillespie 

2000; Gillespie 2001). Wolkenhauer (Wolkenhauer, Ullah et al. 2004) recently reviewed 

the progression of approximations, starting with a true stochastic process, via the 

Chemical Master Equations and Langevin’s formulation, and ultimately resulting in 

typical continuous rate laws.   

 

3. Delays.  All typical metabolic models assume that reaction speed depends on the 

current state of the system.  In reality, there may be significant delays, for instance, 

between the up-regulation of a gene and its ultimate metabolic effect, or the reception of 

an external signal and the effect of the transduced signal on the genome. The natural 
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choice for mathematically representing delays in continuous systems is the format of 

Delay Differential Equations (DDEs), whose theoretical foundation is well established 

(Hale and Lunel). An impediment to the practical use of DDEs is the fact that their 

analysis requires specialized software, which is distinct from standard software for 

ODEs. Moreover, if delays are to be combined with discrete or stochastic effects, 

software for analysis is essentially lacking and must be designed from scratch. Mocek et 

al. (Mocek, Rudnicki et al. 2005) recently described a suitable ODE approximation 

within BST for systems with a single delay, which thus bridges one of the above divides. 

Other types of delays have not been supported by canonical modeling software and 

require the writing of specific code, for instance, in Matlab. We show in a later section 

that these delays can also be formulated as ODE approximations within BST. 

 

 

4. Spatial Effects.  Most metabolic models assume spatial homogeneity, even though it is 

known that the organization of cells is highly compartmentalized. This is a very difficult 

problem, and even partial differential equations (PDEs) models are not always 

appropriate, because the underlying mechanisms, such as active transport and the use of 

scaffolds, are intrinsically different from diffusion processes that are amenable to PDE 

methods.  Instead, it might be necessary to use agent based or object-oriented modeling 

techniques for spatial models.  We do not discuss this issue here. 

 

As soon as switches, stochastic effects and delays are significant within the same system  

of interest, none of the existing modeling frameworks are sufficient.  However, it is  

desirable to address all within one package, for instance, to answer the question:  What is  

the significance of a delay in a stochastic system? This is not an artificially construed  

question, because it was recently shown that although transcription may be highly erratic,  

metabolite levels are very well buffered (Ishii, Nakahigashi et al. 2007). Explanations of  
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this observation require the simultaneous modeling of both, stochastic effects and time  

delays.  We will show in the following how these types of questions can be addressed  

when we embed BST in a Hybrid Functional Petri Net (HFPN). We use for our  

demonstration the HFPN software Cell Illustrator (Miyano 2008), which per se does not  

allow the modeling of delays, but can capture delays through the method of Mocek et al.  

(Mocek, Rudnicki et al. 2005)  and some additional strategies outlined later in this article.   

While we primarily focus on BST, other ODE formulations could be addressed similarly. 

 

2.2 Hybrid functional Petri net (HFPN) 
 
A Petri Net is a graphical and mathematical formalism of a system with concurrent  

processes and properties that may be continuous or discrete.  Petri Nets have been applied  

to such diverse disciplines as manufacturing and communication (Reisig 1985) and were  

apparently first applied to biological systems by Reddy and collaborators in 1993  

(Reddy, Mavrovouniotis et al. 1993).   To meet various needs, Petri Nets have been  

extended into different directions: Stochastic Petri Nets include randomness; Colored  

Petri Nets add a color feature to tokens and thus allow representing, in the same model,  

different dynamic behaviors that are modeled by different token colors; Hybrid Petri Nets  

allow the simultaneous investigation of discrete and continuous processes; Functional  

Petri Nets permit dynamic modifications of system parameters. Hardy and Roillard  

(Hardy and Robillard 2004) recently reviewed the advantages of specific Petri Net  

formalisms for qualitative or quantitative analyses.  Of particular importance here is the  

Hybrid Functional Petri Net (HFPN) format. 

       

 HFPN is an extended functional Petri Net that accounts for both discrete and continuous  

events within the same model system (Matsuno, Tanaka et al. 2003) and has been  

implemented in the software package Cell Illustrator (Miyano 2008). HFPN consists of  
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three types of process elements: places, transitions, and arcs (Fig.1). Places appear  

graphically as single (discrete type) or double (continuous type) lined circles that  

represent the states of the modeled system. In terms of biochemical pathways, places  

usually represent molecular species such as chemical substrates or enzymes. A discrete  

place contains an integer number of tokens which represents the number of molecules,  

while a continuous place contains a positive real number representing the substrate  

concentration. The number of tokens in discrete places and the concentration in  

continuous places define the marking of the system. Transitions (filled or empty  

rectangles) represent (discrete or continuous) actions of the modeled system, such as  

biochemical reactions, protein binding, transcription, translation, or translocation. Both  

types of transitions have the property speed, which is a function of the marking of the  

system, whereas only a discrete transition has the property delay, which quantifies the  

time interval between consequent tokens to be processed by the transition. An arc is used  

 
 

Fig.2.1 An illustrative HFPN model of transcription and translation, as depicted in Cell 

Illustrator (Miyano 2008). Test arcs are used as input arcs because DNA (mRNA) is not 

consumed by the process of transcription (translation). The effect of a repressor element is 

described by an inhibitory arc. Here m1 is the number of DNA molecules with initial value 7; m2 is 

the mRNA concentration with initial value 5.5; m3 is the protein concentration with initial value 

14,400; m4 is the repressor concentration with initial value 1.2. The discrete transition p1 

represents the transcription, which is fired with the speed of 22·m1 per time unit and with delay 33; 

the continuous transition p2 describes the translation and is fired with speed 12·m2 per time unit. 

Translation occurs only if the mRNA concentration m2 is greater than or equals to the test arc 

weight 4.5 and if the repressor concentration m4 is less than or equal to the inhibitory arc weight 

2.0. 
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to connect a place with a transition. (It is not allowed to use an arc to connect between  

places or between transitions.) An arc from a place to a transition is called an input arc,  

and one from a transition to a place is called an output arc. There are three types of arcs:  

normal, inhibitory, and testing. All three types of arcs may be used as input arcs, while  

only a normal arc is allowed to be used as an output arc. Each arc has the property  

weight, which is the minimum amount of flux required for the arc to function. A  

transition is enabled only if the content in all source places (there may be only one source  

place) is equal to or exceeds the weight of the input arc(s). When a transition is fired, the  

content in each source place is taken off the arc weight amount and, through a normal arc,  

the output arc weight amount of content is added to each sink place. An inhibitory arc  

with weight w enables a transition to fire only if the content of the source place is less  

than or equal to w. For instance, an inhibitory arc can be used to represent a repressor in  

gene regulation. A test arc does not consume any content of the source place by firing,  

but is used, for instance, to represent an enzyme catalyzing a reaction without being  

consumed (Fig.1). 

 

2.3.  Implement of BST models as Petri Nets 
 
It is relatively straightforward to translate a GMA system into a Petri Net model (Fig.2). 

Each dependent and independent variable in the GMA is represented in the Petri Net 

model by a continuous place with the species’ name. Every positive term in the GMA 

differential equations translates into the speed of an input transition and every negative 

term into the speed of an output transition. Direct connectivity is only built between 

places where mass is conserved between them. However, there is an exception: when a 

place represents a constant input, it does not connect with any other place as to keep its 
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content unaltered. We do not connect places that are related through signals only. 

Examples will be shown in the Results section. 

 

In addition to being capable of representing continuous and deterministic ODE models, 

Petri Nets can actualize stochastic components, whether these are continuous (in the form 

of stochastic equations) or discrete. The Petri Net framework permits several realizations 

of a stochastic model.   

2.4.  Representation of stochasticity in HFPN 

2.4.1. Construction of a discrete stochastic model according to reaction type 
 
Besides spontaneous transitions, HFPN provides the option of timed transitions, where an 

enabled transition fires with randomly determined time delay d. This feature can be used 

to model random events in biological process systems. The random time follows a 

specified probability density function such as the most commonly used exponential 

distribution, where d satisfies Prob(d<t)=1-exp(-βt). The rate β is related to the 

deterministic rate parameter and the number of available reactant molecules. For a first-

order reaction of the form 

,
k

A B→  

 
 

we have β=k, where k is the deterministic rate constant. For a reaction of the form  

,
k

A B C+ →  
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we have β=k/(V N), where V is the cell volume and N is Avogadro’s number. 
If the reactions are different than these two simple types, they need to be reduced to these 

base types, and the stochastic construction is more complicated (Goss and Peccoud 

1998).   

 

2.4.2. Construction of a discrete stochastic model from a deterministic ODE model 
 
The so-called τ -leap method within Gillespie’s method for stochastic modeling 

(Gillespie 2007) connects stochastic simulations of biochemical reaction systems to the 

 
Fig. 2.3 GMA system and its HFPN representation. 

 

XA 

XB 
XC 

βXA d βXAXB 

XA XB 

d 

Fig.2.2 Implementation of monomolecular and bimolecular reactions in a discrete Petri Net. Here 

XA, XB, and XC  are the molecular amounts of species A, B, and C, respectively; d is the transition delay; 

βXA and  βXAXB  are the transition speeds for monomolecular reaction and bimolecular reaction, 

respectively. 
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Euler method for solving ODEs. Tian and Burrage (Tian and Burrage 2006) developed a 

more general technique to construct stochastic models from deterministic models 

described by ODEs. Suppose a reaction can be described by the deterministic ODE model  

1 1( , ..., ) ( , ..., ), 1, ..., ,i
N Ni i

d x
f x x g x x i N

dt
= − =                              (5) 

        
 
where

1
( , ..., )

Ni
f x x τ and 1( , ..., )

i Ng x x τ  are the synthesis and degradation of species Si 
respectively, and ix  represents the concentration of species Si in the deterministic model. 
The corresponding discrete stochastic model is 

      
1 1( ) ( ) ( ( , ..., ) ) ( ( , ..., ) ),N Ni i i ix t x t P f x x P g x xτ τ τ+ = + −                  (6) 

 

where ix  is the number of molecules of species Si, Eq. 6 describes how increases and 

decreases in xi within a time interval [t, t+τ) can be seen as samples of Poisson random 

variables with means 
1

( , ..., )
i N

f x x τ  and
1

( , ..., )
i N

g x x τ , respectively. Thus, without requiring 

detailed knowledge of biochemical reactions, kinetic rates or molecular numbers, a 

discrete stochastic model can be constructed from the conventional deterministic ODE 

model.   

2.4.3. Construction of continuous stochastic models 
   

Noting the mathematical fact that a Poisson variable with a particular mean and variance 

that is much greater than 1 can be approximated by a Gaussian random variable with the 

same mean and variance, one can further approximate Eq. 6 as  

 

              
1 2

( ) ( ) ( , ) ( , )

( ) [ (0,1)] [ (0,1)]

i i i i i i

i i i i i

x t x t N f f N g g

x t f f N g g N

τ τ τ τ τ

τ τ τ τ

+ ≈ + −

= + + − +
                   (7) 

 
For continuous Markov processes, it can be shown (Gillespie 2001; Gillespie 2002) that 

Eq. 7 is mathematically equivalent to an equation with white noise of the form    
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1 2'( ) [ ( )] [ ( )]i i i i ix t f f t g g t= + Γ − + Γ ,                              (8) 
 
 

where ( )tΓ is the Gaussian white-noise process satisfying ( ) ( ') ( ');i j ijt t t tδ δΓ Γ = −  the first 

delta function is Kronecker’s and the second is Dirac’s. Eq. 7 represents a general way to 

construct continuous stochastic models from deterministic models, either with or without 

delays (Tian, Burrage et al. 2007).  

 

The HFPN software Cell Illustrator (Miyano 2008) is equipped with a random number  

generator, which facilitates the modeling of basic stochastic effects, such as Gaussian  

noise. Poisson process can be implemented through a programming option. In the Results  

section, we demonstrate the ease with which noise and delay effects can be modeled and  

simulated in this setting.  

Specially, if we can find 1 , , nN N" such that 1 1 n nN Nτ τ= =" , i.e., every discretization 

step in the derivative approximation has the same size, then we only need a system of 

1 maxmax{ , , } 1 1nN N N+ = +" additional ODEs of the form 

 

2.5 Approximation of various types of delays by ODEs 

Although the HFPN software Cell Illustrator is equipped with a delay function for 

discrete transitions, it provides no means to actualize delay effects in continuous systems. 

The typical mathematical formulation of delays in continuous systems with multiple time 

scales is a system of delay differential equations (DDEs). Since ODEs, in contrast to 

DDEs, are easily represented within the framework of HFPN, it is useful to explore what 

types of delays can be represented as ODEs in an approximate, yet valid fashion.     
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The simplest case of a single delay was addressed with a discretization method proposed 

by Mocek et al. (Mocek, Rudnicki et al. 2005). This method includes a normalization 

step, which is inconvenient here and will be removed in the following. 

2.5.1.  Approximation of multiple constant delays by ODEs 
 
Consider a system with (one or) multiple constant delays of the form 

where Y(t) is a vector function and 1 , , nτ τ" are distinct discrete delays. We choose n 

positive integers 1 , , nN N"  and define the following auxiliary variables:  

                                                1'( ) ( ( ), ( ), ..., ( ))

( ) ( ), [ , 0],
nY t f Y t Y t Y t

Y t t t h

τ τ

φ

= − −

= ∈ −
                                      (9) 

 

                            ( ) ( ), 0 , 1, , .j

ij j

j

x t Y t i i N j n
N

τ
= − ≤ ≤ = "                                (10) 

Particularly, the definition implies that 

                                                     0 ( ) ( ), ( ) ( ), {1, ... }
jj N j jx t Y t x t Y t j nτ= = − ∈ .                       (11) 

The derivative of ijx can be approximated as 

                                                       

( 1)

' [ ( ) ( )] /

[ ( ) ( )], .

j j

ij ij ij

j j

j

i j ij

j j

x x t x t
N N

N i
x t x t t

N

τ τ

τ −

≈ + −

= − >

                                     (12) 

Thus the DDE (Eq.9) can be approximated by a system of jN +1∑  additional ODEs 

     

1

( 1)

'( ) ( ( ), ( ), ..., ( ))

' [ ( ) ( )]

(0) ( / ),1 , 1, ..., .

nN N

j

ij i j ij

j

ij j j

Y t f Y t x t x t

N
x x t x t

x i N i N j n

τ

φ

−

=

= −

= − ≤ ≤ =

                                    (13) 

Specially, if we can find 1 , , nN N" such that 1 1 n nN Nτ τ= =" , i.e., every discretization 

step in the derivative approximation has the same size, then we only need a system of 

1 maxmax{ , , } 1 1nN N N+ = +" additional ODEs of the form 

In contrast to a fixed delay, the state of the system may also depend on its recent history, 

where, for instance, the most recent events have a higher impact than events that 
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happened a longer time ago.  A system affected by its history in the past interval [t-L, t] 

may be represented in two ways that are mathematically equivalent. The first option is 

the integro-differential equation 

 

 

                                                        

1

max
( 1)

max

max max

'( ) ( ( ), ( ), ..., ( ))

' [ ( ) ( )]

(0) ( / ),1 ,

nN N

i i i

i
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N
x x t x t

x i N i N
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φ

−

=

= −

= − ≤ ≤

                                 (14) 

where maxτ is the delay corresponding to maxN . 
 

2.5.2.  Approximation of distributed delay by ODEs 
 
In contrast to a fixed delay, the state of the system may also depend on its recent history, 

where, for instance, the most recent events have a higher impact than events that 

happened a longer time ago.  A system affected by its history in the past interval [t-L, t] 

may be represented in two ways that are mathematically equivalent. The first option is 

the integro-differential equation 

    
0

'( ) ( ( ), ( ) ( ) ),
L

Y t F Y t Y t s f s ds= −∫                                     (15) 

where f is the function characterizing the distributed delay and satisfying 
0

( ) 1
L

f s ds =∫ .   

 
The second option is  
                                                   '( ) ( ( ), ( ) ( ) ),

t

t L
Y t F Y t Y s f s ds

−
= ∫                                          (16) 

 
where f is a periodic distribution function with period L. To convert the distributed delay 

to a constant delay, we use the second representation. Introducing an auxiliary variable  

 

             ( ) ( ) ( )
t

t L
z t Y s f s ds

−
= ∫ ,                                       (17) 

 
we differentiate it to yield an ODE with a singular discrete delay 
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                      ( )
( ) ( ) ( ) ( ).

dz t
Y t f t Y t L f t

dt
= − −                                       (18) 

 
Applying the earlier discretization method again, we obtain 
 

                     

1

'( ) ( ( ), ( ))

'( ) ( ) ( ) ( ) ( )

'( ) [ ( ) ( )], 1 .

N

i i i

Y t F Y t z t

z t Y t f t x t f t
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=
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                       (19) 

2.5.3.  Approximation of time dependent delays by ODEs 
 
A delay system with a bounded time-dependent delay can be represented by 

                       '( ) ( ( ), ( ( )),Y t F Y t Y t tτ= −                                (20)  

where the time dependent delay is a positive differentiable function ( ) [ , ]t a bτ ∈ .  Based on 

the discretization approach, Eq. 19 can be approximated by  

 

                        
1

'( ) ( ( ), ( ))

1 '( )
'( ) [ ( ) ( )], 1 .

( )

N

i i i

Y t F Y t x t

t
x t N x t x t i N

t

τ
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=

−
= − ≤ ≤

         (21) 

2.5.4.  Approximation of systems with random delay    
 
We consider a system with a bounded random delay of the form 

                                           '( ) ( ( ), ( ( ))),Y t F Y t Y t tτ= −                                            (22) 

where the delay ( ) [ , ]t a bτ ∈ is a bounded discrete stochastic process. Based on the 

discretization approach, the system can be approximated by  

 
where rvτ is the value of the corresponding random variable sampled at time t and 

remains that constant in the window of [ , ]t t t+ Δ . In light of the possible distraction from 

the main theme and also the rather modest need for continuous random delays in 

biological systems analysis, we limit ourselves here to discrete random delays, which can 

be easily implemented in the Cell Illustrator, and will explore the more complicated issue 
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of continuous stochastic delays at a later time. We will show in the Results section how 

these approximations can be seamlessly implemented in the HFPN framework. 

 

                
1

'( ) ( ( ), ( ))

( ) ( ) [ ( ) ( )] , 1 ,

N

i i i i

rv

Y t F Y t x t

N
x t t x t x t x t t i N

τ −

=

+ Δ = + − Δ ≤ ≤
               (23) 

 
 
 

3. Results 

To test the validity of the above approximations, we apply the proposed methods to two 

simple yet generic systems and compare our simulation results with those obtained with 

established methods. 

Example 1: A generic pathway system 
 
This first example was inspired by a combination of experimental findings.  Namely, it 

has been observed that gene transcription and translation are often quite erratic, which 

may be due to fluctuations in the availability of ribosomes and/or particular puridines, 

pyrimidines, or amino acids (e.g., (Maheshri and O Shea 2007)).  At the same time, Ishii 

et al. (Ishii, Nakahigashi et al. 2007) observed that metabolite concentrations are 

surprisingly constant even if transcription and translation are strongly affected, for 

instance, by special diets, such as amino acid starvation. The combination of stochastic 

production and smooth availability of metabolites begs the question of whether the delays 

between gene activation and metabolite generation buffer the observed stochasticity. 

Because the complete transcription, translation, and metabolite production process is 

complex, we study a very much simplified, yet for our purposes representative, generic 

pathway system with respect to buffering per delays and feedback. 

 
Effects of Delays.  We consider a generic branched system (Fig. 4) with four time 

dependent variables (y1 ,…, y4 ) and one constant supply (y5). The downstream component 
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y3 inhibits the production of upstream component y1 through negative feedback, and two 

delays exist between y2 and y3, and between y2 and y4. A direct example for such a 

structure is a metabolic pathway. As an illustration, we test the following four cases: 

(1) Two different constant delays τ1 and τ2. 

(2) Two non-constant delays: the first is a distributed delay in the window [τ1 –d, τ1 +d] 

with kernel function f(t), and second is a time dependent delay τ2(t).  

(3) The delays are given as two uniform random variables whose values are taken from 

the windows [τ1 –d1, τ1 + d1] and [τ2 –d2, τ2 + d2], respectively.  

(4) The delays are Gaussian random variables with means τ1 and τ2 and standard 

deviation (stddev) d1 and d2, respectively. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
As a specific example, consider the (almost arbitrarily chosen) numerical implementation 

of the (delayed) GMA representation of the pathway in Fig. 4, which is given in Eq. 24. 
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Fig.2.4 A generic system with one inhibitory feedback loop and two delays: standard 

diagram and its corresponding HFPN representation.  
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Fig.2.5 Comparisons between the solutions obtained with established methods (DDE23 in MatLab 

and DDE SOLVER in Fortran), shown with symbols, and the proposed discretization, implemented in 

Cell Illustrator and shown as solid lines. (A) Responses of the generic system in Fig.4 without delay. (B, 

C, D) Cases with two constant delays τ1=9, τ2=15 and different numbers of auxiliary variables (N=10, 20 

and 40, respectively). (E, F) Cases with two non-constant delays: a distributed delay in the window 

[7.5,10.5] with kernel π/6 |sin(t π /3)|, and a time dependent delay τ =15+sint;  numbers of auxiliary 

variables are N=10 and 30, respectively.  

For cases involving fixed, deterministic delays we can easily compare our solutions with 

solutions from algorithms such as DDE23 in MatLab and the DDE SOLVER in Fortran.  

The results show that a moderate number of auxiliary variables is sufficient for a 
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relatively accurate discretization (Fig.5). Not being restricted to deterministic delays, the 

discretization method can also be applied to systems with random delays. For such 

systems, no standard method is available for comparisons, and we execute the 

comparison instead with the case of constant delays. Figs. 6 A and B show that, with 10 

and 30 auxiliary variables applied respectively, the dynamics of systems with uniform 

random delays is very close to results with the corresponding constant delays. Again, the 

more auxiliary variables are used, the more accurate the simulation will be. Moreover, 

relatively small numbers of auxiliary variables already produce accurate simulations, and 

this conclusion also holds for the Gaussian case. The results suggest that the system 

behavior is robust with respect to the ranges and (A, B, C) and distribution types (D) of 

the random delays, and that the dynamic responses are mainly determined by the mean 

values of the random delays. This finding implies that irregular delays in vivo may in 

most cases be modeled by the corresponding constant mean delays.  
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Fig.2.6 Generic biochemical system with random delays. (A, B) Delays are implemented as two 

uniform random variables with values sampled from [5,13] and [11,19], respectively. Solid lines result 

from uniform random delays and discrete symbols from two constant delays τ1=9, τ2=15. Numbers of 

auxiliary variables are N=10 and 30 for A and B, respectively. (C) Delays are Gaussian random variables 

with means 9 and 15, respectively, and both with standard deviation 8. Solid lines result from Gaussian 

random delays and discrete symbols from two constant delays τ1=9, τ2=15. N=10.  (D) Delays are taken 

from different distributions; namely Gaussian (solid lines) versus uniform delays (discrete symbols). The 

two distributions have the same means (9 and 15 respectively for the two delays); Gaussian random 

delays have the same standard deviation 8 and uniform random delays have the same window width 8; 

N=30. 

  

Effects of Stochasticity.  We now consider the effects of stochasticity, which we 

implement and interpret as two types of internal noise, namely additive Gaussian and 

multiplicative noise. 
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Fig.2.7 Generic biochemical system with noise, delays and feedback loop. (A,B) external Gaussian 

noise G(0,0.5) and G(0,1) are added to y1 respectively.   (C,D) external Gaussian noise G(0,0.5) and 

G(0,1) are added to y2 respectively.   (E, F) internal noise is added to y1 and the entire system, 

respectively. All scenarios use two constant delays τ1=9, τ2=15 and 40 auxiliary variables. Different 

symbols represent the noise free dynamics (stars for y1, diamonds for y2, squares for y3, circles for y4) 

and solid lines describe the noisy dynamics. 

 

When 50% Gaussian noise is added to variable y1, the intermediate metabolite directly 

following y1, namely y2, is numerically affected, but its oscillation frequency and 

amplitude are qualitatively retained. The downstream products y3 and y4 are relatively 
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smooth and seem to converge to the stationary states of the noise-free system (Fig.7. A). 

If the amplitude of the external noise in y1 is increased to 100% (Fig.7. B), the oscillation 

in y2 is more strongly affected, while the dynamics of y3 and y4 are not too different from 

the previous case. Compared with y1, the impact of noise in y2 is more severe. The 

variable itself, as well as y4, both deviate considerably from their trajectory in the original 

noise-free system, while the dynamics of y1 and y3 are roughly retained (Figs.7. C, D). 

The smoothness of y3 and y4 in all these cases clearly suggests that the external noise in 

the substrates y1 and y2 is rather effectively buffered by the delays. Moreover, notice that 

y1, y2 and y3 are connected through mass fluxes and through the negative feedback control 

of y1 by y3, while the pathway composed by y1, y2 and y4 has no such controlling 

mechanism.  As a consequence, the responses are different: the negative feedback loop 

together with delay efficiently dampens the external noise and retains the integrity of the 

system behavior.  

 

Fig.7. E and F demonstrate that internal noise implemented through multiplicative terms 

has a stronger impact on this particular system than additive external noise. When 

internal noise is restricted to y1 only, y1’s direct successor y2 deviates far from the original 

noise-free trajectory, and the same effect is seen in the following metabolite y4.  By 

contrast, y3, maintains more or less the same dynamics as its noise-free counterpart, 

which is probably again due to the combination of the negative feedback loop with the 

delay. When internal noise terms are added to all metabolites, all components in the 

closed pathway consisting of y1, y2 and y3 exhibit undamped oscillations, and the 

dynamics of all components is distinctly different from that of the noise-free system. 

Taken together the results indicate that the combination of negative feedback with delay 

can substantially affect noise and either buffer or amplify oscillations, depending on the 

specifics of the system. 
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Example 2: An auto-repressive gene regulatory network 

 

As a second example we consider an auto-repressive gene regulatory network in a single 

cell as studied previously by (Lipniacki, Paszek et al. 2006; Tian, Burrage et al. 2007), 

but with generalizations that account for the effects of a discrete switch, delays, and noise 

in the system (Fig.8). Suppose there are H homogeneous copies of a certain gene in a 

cell. Each gene copy switches independently between an active and an inactive state. The 

period that the gene remains on or off is a Gaussian random variable with the same mean 

and variance. The activated genes are transcribed into mRNAs and these are 

consequently translated into proteins. Both transcription and translation are relatively 

time consuming multi-stage processes, which are modeled through time delays. When 

exceeding some concentration threshold, the resulted protein acts as a repressor: it 

reduces the rate of gene activation by shortening the period during which the gene is 

active, and also reduces the production rate of the corresponding mRNA. The system is a 

hybrid that contains stochastic discrete switches and delays that are difficult to model 

within traditional software systems and benefits from our implementation of discrete and 

continuous features in Cell Illustrator.  The model system can be formulated as   
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where g, m and p are amounts (concentrations) of active gene, mRNA and protein, 

respectively; kI  and kA  are the periods during which the gene remains active and inactive, 

respectively; mτ and pτ are time delays for transcription and translation, respectively; and 
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a and β are rates of synthesis and degradation, respectively. G(p)=1/(1+pn/ p0
n ) is a Hill 

function representing the inhibitory effect of the protein, with Hill coefficient n 

characterizing the strength of association and p0 representing the repression threshold of 

the protein. It is straightforward to recast this function as a power-law model within BST 

(Savageau and Voit 1987; Voit 2005), but we skip this step here because it would not 

yield genuinely new insights. Instead, retaining the Hill function also shows that the 

proposed hybrid method applies to non-BST dynamical representations as well. 

 

  

 
 
 

  inactive 
gene 
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gene 

mRNA protein 
kA 

kI  G2 (p) βm βp 
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am G1(p) 
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Fig.2.8 Auto-repressive gene expression system and initial parts of its HFPN 
representation.  
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Fig.2.9 Auto-repressive gene regulatory network in a single cell: comparisons of 

effects of noise, assuming that the system has a constantly activated gene, g(t)=1. ap 

=4.5, 0.45, 0.045 for the first, the second and third rows respectively. Left column 

figures are without noise, right columns are from systems with internal 

noise.  p( )=10, [ 2.8, 0];t t ∈ −  ( ) 1,m t =  [ 12, 0];t ∈ −  =2,N  33,
m

α =  
m p

β β=  0.23,=  

12,
m

τ = 2.8.
p

τ =  
0

10,p = 2n = . (bold line: active gene scaled by 10 fold; grey line: 

mRNA; black line: protein scaled by 0.1 fold, except for E and F.)   
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Fig.2.10 Auto-repressive gene regulatory network in a single cell: comparison of 

systems exposed to external noise and those exposed to external and internal noise. It is 

assumed that the system has a constantly activated gene, g(t)=1. 4.5, 0.45, 0.045
p

α =  for the 

first, the second and third rows respectively. Panels in left column: systems with external 

noise (10% of initial values); panels in right column: systems with external and internal 

noise. Other parameter values are the same as in Fig.9. (bold line: active gene; grey line: 

mRNA; black line: protein)   

 



 53

0 100 200 300 400 500 600
0

50

100

150

200

250

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

A  0 100 200 300 400 500 600
0

100

200

300

400

500

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

B  

0 100 200 300 400 500 600
0

100

200

300

400

500

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

C  0 100 200 300 400 500 600
0

50

100

150

200

250

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

D  

0 100 200 300 400 500 600
0

100

200

300

400

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

E  0 100 200 300 400 500 600
0

50

100

150

200

250

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

F  

0 100 200 300 400 500 600
0

50

100

150

200

250

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

G  0 100 200 300 400 500 600
0

50

100

150

200

250

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

H  



 54

0 100 200 300 400 500 600
0

20

40

60

80

100

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

I  0 100 200 300 400 500 600
0

20

40

60

80

100

120

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

J  

0 100 200 300 400 500 600
0

20

40

60

80

100

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

K  0 100 200 300 400 500 600
0

20

40

60

80

time

ac
tiv

e 
ge

ne
, m

R
N

A
 a

nd
 p

ro
te

in

L  
Fig. 2.11 Auto-repressive gene regulatory network in a single cell. (A, B, C, D) Randomness 

originates only from the genetic switch; 6, 30, 60,120
A I

k k= = minutes, respectively. (E, F, G, H) 

randomness arise from genetic switch and internal noise in both mRNA and protein. 

6, 30, 60,120
A I

k k= = minutes respectively. (I, J, K, L) randomness arises from genetic switch and noise 

(both internal and external) in transcription and translation. 6, 30, 60,120
A I

k k= =  minutes respectively.  

For all scenarios, 4.5,
p

α =  and the two Hill functions are identical. Other parameters are the same as 

those in Fig.9. (bold line: active gene scaled 10 fold; grey line: mRNA; black line: protein scaled by 0.1 

fold; data are not scaled in I, J , K and L)   

 

We studied the individual and cooperative effects of negative feedback loops, switches,  

delays and noise in three steps: in the first two steps we only considered stochasticity in  

transcription and translation while fixing the activated gene number as 1; in the third step  

we expanded our scope by including randomness in the activated gene. 
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To study the combined effects of negative feedback and internal noise, we performed 

simulations with different protein synthesis rates while all other parameters were kept the 

same (Figs. 9). The simulation results were consistent with those by Tian et al. (Tian, 

Burrage et al. 2007): the oscillations in the deterministic model are robust with respect to 

the protein synthetic rate Pα ; the stochastic nature in gene expression can clearly amplify 

the amplitudes of the oscillation, while the oscillatory period roughly remains the same; 

even if there is a 100-fold decrease in the protein synthesis rate, the stochastic system can 

maintain the oscillation while the deterministic system produces a damped oscillation (E, 

F). However, using the results from the MatLab algorithm DDE23 as a base for 

comparison, our method shows greater accuracy than (Tian, Burrage et al. 2007) in 

simulating the delay differential equation in the noise free case (result not shown).  

  

After numerically establishing the accuracy of our method in the first step, we compared  

the effects of internal noise, external noise and their combination. Fig.10 shows that,  

instead of amplifying the oscillation as internal noise does, even small amounts of  

external noise (10% of the initial values) can significantly dampen the oscillation (A, C,  

E): the amplitude of the oscillation is greatly reduced, and the oscillation period also  

decreases from ~50 min in the noise free case (Fig.9 A) to ~30 min (Fig.10 A); when the  

system is simulated with both eternal and internal noise, the oscillation is not sustainable,  

and both mRNA and protein concentrations are close to some constant levels. This  

comparison shows the dominating effects of external noise over internal noise, and it  

provides a clue to the question why it is rare (Monk 2003) to observe oscillations in gene  

expression in most auto-repressive system.  

  

Finally we include a genetic switch in our system (Figs.11). Whenever the gene is  

switched on, bursts in mRNA and protein appear after some delay; if the gene remains  

active long enough, both mRNA and protein exhibit oscillations. However, when the  



 56

active period of the gene is less than the period of the oscillation, Figs.11 A, E and I show  

that only parameters kI and kA (the gene’s mean periods of being active or inactive,  

respectively) affect the frequency of mRNA and protein production. When only internal  

noise is added to mRNA and protein, the system dynamics is not significantly different  

from the noise free case, as one can see from comparing the two sets of figures A~D vs.  

E~F, and the gene switch contributes primarily to the stochasticity in the system.  

However, when both internal noise and external noise are applied to mRNA and protein  

(I~L), the amplitudes of mRNA and protein oscillations are greatly reduced. Moreover,  

their concentrations maintain the initial, basal level when no activated gene is available.  

In summary, our study indicates that external noise and randomness in the gene switch  

contribute significantly to the stochasticity of gene regulatory systems, which are under  

the influence of both external and internal uncertainty.  

 
 
 
 

4. Discussion 

In the past, aspects like stochasticity, switches and delays in biological systems had to be 

addressed with different software packages, or it was necessary to develop new software 

from scratch. As a consequence, the interrelationships between such combined effects 

have seldom been investigated, even though they are known to occur in reality with some 

frequency. In this work we have developed a hybrid method that permits the simulation 

of biological systems containing different types of non-trivial effects, including 

regulation, switches, randomness, and various delays. Two simple yet generic examples 

from metabolism and gene regulation demonstrated the accuracy, efficiency and 

advantages of this hybrid approach. The proposed methodology allows the integration 

and analysis of the following components:   

 



 57

1.  BST and Petri nets   

Although BST and Petri nets are both over 40 years old, we have shown here for the first 

time how they can be merged for advanced studies in systems biology. The merger of the 

two frameworks makes it possible to take advantage of the features of both 

methodologies and to simulate within the same standard software some complicated, 

combined effects that up to now could only be done through programming from scratch. 

In particular, the strong and very valuable guidance for de novo model design, offered by 

BST, can now be extended to ODE systems that are not strictly deterministic. 

Furthermore, BST methods associated with the steady state are becoming applicable for 

delayed systems. For instance, we showed elsewhere (Mocek, Rudnicki et al. 2005) that 

stability in delay systems may be assessed with methods developed for ODEs. 

 

2.  Reformulation of different types of delays within BST (or other ODE frameworks)   

While simple, fixed delays have been modeled in BST before (Mocek, Rudnicki et al. 

2005), the repertoire of delays is vastly expanded in this work.  This ability to account for 

different types of delays is becoming increasingly important when models in systems 

biology span different organizational levels and run at different time scales that lead to 

delayed responses. 

 

3.  Switches and stochasticity in BST 

Switches and stochasticity have appeared in the BST literature (e.g., (Voit 1993; 

Savageau 2001; Lipniacki, Paszek et al. 2006)), but never in a systematic fashion.  They 

are now both direct variations in the HFPN formulation presented here. 

 

4.  Stochasticity and delays  

The combination of stochasticity and delays appears to become more important, for 

instance, in fluctuations in transcription, and in studies of individual cells (Longo and 
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Hasty 2006). Their combination has seldom been studied in the past, because a unifying 

modeling framework was missing.  We have proposed such a framework here. 

  

5. Design and operating principles 

Merging different aspects of biological systems, as described here, will support a major 

pursuit of systems biology, namely the search for general design principles, which dictate 

why biological systems are organized in a particular fashion (Savageau 1985). With the 

repertoire of tools proposed here, we will be able to answer questions such as: What are 

the best mechanisms to buffer stochasticity or fluctuations in the environment? Are 

delays necessary evils or are they integral and advantageous to particular designs? Our 

studies presented here provide the necessary tool to address these and other challenges 

that pervade integrative systems in biology. In particular, the special structure of the 

equations in BST system has been shown to offer an elegant manner for the elucidation 

of design features, called the method of controlled mathematical comparisons (MCMC) 

(Irvine and Savageau 1985; Hlavacek and Savageau 1996; Alves and Savageau 2000 ). 

According to this method, the investigated pathway is compared with an alternative, 

hypothetical pathway that differs in just one particular regulatory or operational feature, 

so that the difference in responses can be attributed solely to the feature of interest (e.g., 

(Savageau 1985)). Even if some quantities affecting the investigated and the hypothetic 

models are unknown, their effects often cancel out and can then be ignored in the 

comparisons. Because the proposed hybrid models constitute a BST extension that permit 

discrete and stochastic components, it is feasible to apply MCMC to hybrid systems and 

to evaluate the effects of a particular feature of interest in comparison to systems without 

this feature.  For instance, the importance of stochasticity may be assessed in comparison 

to the corresponding deterministic model. We are presently comparing a standard BST-

GMA system of the dynamics of dopamine at synapses in the context of 

neurodegenerative diseases with a corresponding model that allows for delays and 
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stochasticity. The comparison is being executed with alternative HFPN formulations 

within CI, and the results will be presented elsewhere. 

 
 

A remaining challenge of all modeling efforts is parameter estimation. In the case of  

hybrid models, it may be possible to distinguish parameters for continuous and discrete  

parts of a hybrid model. The details of this separation need to be worked out. A  

possibility may be application of a method that originated in geophysics and is called data  

assimilation (DA). Its authors, Nagasaki et al. (Nagasaki, Yamaguchi et al. 2006),  

estimated parameters and identified the structure of a small-sized HFPN model from  

time-course gene expression data. However, their approach was limited to an ODEs  

model, and a true hybrid model (containing discrete and continuous, deterministic and  

stochastic effects) has yet to be addressed.  In general, structural analysis for discrete  

Petri Nets has proven to be very fruitful in attempts to understand the topological 

properties of a network and to discover biological design principles. While it is to be  

expected that theoretical analyses are more complicated for hybrid systems, it is also  

evident that hybrid systems are abundant in nature and that the development of novel  

methods of analysis will be rewarding.  In this paper we have taken a step forward toward  

these types of analysis. 

 

Acknowledgments 

The authors thank Skip Thompson for his advice regarding the DDE SOLVER. Monika 

Bajan and Sebastian Sosnik’s technical assistance with Cell Illustrator was highly 

appreciated.  This work was supported in part by a Molecular and Cellular Biosciences 

Grant (MCB-0517135; E.O. Voit, PI) from the National Science Foundation. Any 

opinions, findings, and conclusions or recommendations expressed in this material are 

javascript:open_compose_win('popup=1&to=%22Monika+Bajan+%5BFQS+Poland%5D%22+%3Cccs%40fqs.pl%3E&cc=&bcc=&msg=&subject=&thismailbox=INBOX');�
javascript:open_compose_win('popup=1&to=%22Monika+Bajan+%5BFQS+Poland%5D%22+%3Cccs%40fqs.pl%3E&cc=&bcc=&msg=&subject=&thismailbox=INBOX');�
javascript:open_compose_win('popup=1&to=Sebastian+Sosnik+%3Cs.sosnik%40fqs.pl%3E&cc=&bcc=&msg=&subject=&thismailbox=INBOX');�
javascript:open_compose_win('popup=1&to=Sebastian+Sosnik+%3Cs.sosnik%40fqs.pl%3E&cc=&bcc=&msg=&subject=&thismailbox=INBOX');�


 60

those of the authors and do not necessarily reflect the views of the sponsoring 

institutions.  

 

References 

1. Savageau MA. Biochemical systems analysis. I. Some mathematical properties of 

the rate law for the component enzymatic reactions. Journal of Theoretical 

Biology 1969;25:365-369 

2. Savageau MA. Biochemical systems analysis. II. The steady-state solutions for an 

n-pool system using a power-law approximation. Journal of Theoretical Biology 

1969;25:370-379 

3. Savageau MA. Biochemical systems analysis. A study of function and design in 

molecular biology: Addison-Wesley; 1976 

4. Voit EO. Computational analysis of biochemical systems: a practical guide for 

biochemists and molecular biologists: Cambridge University Press; 2000 

5. Matsuno H, Tanaka Y, Aoshima H, et al. Biopathways representation and 

simulation on hybrid functional Petri net. In Silico Biol 2003;3:389-404 

6. Miyano S. Cell Illustrator website. http://wwwcellillustratorcom/ 2008 

7. Henri MV. Lois générales de l'action des diastases. Paris, Hermann 1903 

8. Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. Biochem Zeitschrift 

1913;49:333-369 

9. Volterra V. Variazioni e fluttuazioni del numero d'individui in specie animali 

conviventi. Mem R Accad dei Lincei 1926;2 

10. Lotka A. Elements of Physical Biology. Baltimore: Williams and Wilkins 1924 

11. May RE. Theoretical Ecology: Principles and Applications. Oxford: Blackwell; 

1976 

12. Fell DA. Understanding the Control of Metabolism: Portland Press, London; 1997 

http://wwwcellillustratorcom/�


 61

13. Visser D, Heijnen JJ. The mathematics of metabolic control analysis revisited. 

Metab Eng 2002;4:114-123 

14. Hatzimanikatis V, Bailey J. MCA has more to say. Journal of Theorectical 

Biology 1996;182:233-242 

15. Savageau MA. Design principles for elementary gene circuits: Elements, 

methods, and examples. Chaos 2001;11:142-159 

16. Voit EO. Smooth bistable S-systems. IEE Proc Systems Biol 2005;152:207-213 

17. Gillespie DT. Exact stochastic simulation of coupled chemical reactions Journal 

of Physical Chemistry 1977;81:2340-2361 

18. Gillespie DT. The chemical Langevin equation. The Journal of Chemical Physics 

2000;113:297-306 

19. Gillespie DT. Approximate accelerated stochastic simulation of chemically 

reacting systems. Journal of chemical physics 2001;115:1716-1733 

20. Wolkenhauer O, Ullah M, Kolch W, Cho K-H. Modelling and Simulation of 

IntraCellular Dynamics: Choosing an Appropriate Framework IEEE Transactions 

on NanoBioscience 2004;3:200-207 

21. Hale J, Lunel SMV. Introduction to Functional Differential Equations. 1st ed: 

Springer 

22. Mocek WT, Rudnicki R, Voit EO. Approximation of delays in biochemical 

systems. Mathematical Biosciences 2005;198:190-216 

23. Ishii N, Nakahigashi K, Baba T, et al. Multiple high-throughput analyses monitor 

the response of E. coli to perturbations. Science 2007;316:593-597 

24. Reisig W. Petri Nets: An Introduction: Springer Verlag; 1985 

25. Reddy VN, Mavrovouniotis ML, Liebman MN. Petri net representations in 

metabolic pathways. Proc Int Conf Intell Syst Mol Biol 1993:328-336 



 62

26. Hardy S, Robillard PN. Modeling and simulation of molecular biology systems 

using Petri nets: Modeling goals of various approaches. Journal of Bioinformatics 

and Computational Biology 2004;2:619-637 

27. Goss PJE, Peccoud J. Quantitative modeling of stochastic systems in molecular 

biology by using stochastic Petri nets. Proceedings of the National Academy of 

Sciences 1998;95:6750-6755 

28. Gillespie DT. Stochastic simulation of chemical kinetics. Annual Review of 

Physical Chemistry 2007;58:35-55 

29. Tian T, Burrage K. Stochastic models for regulatory networks of the genetic 

toggle switch. Proceedings of the National Academy of Sciences 2006;103:8372-

8377 

30. Gillespie DT. Approximate accelerated stochastic simulation of chemically 

reacting systems. Journal of Chemical Physics 2001;115:1716 

31. Gillespie DT. The chemical Langevin and Fokker-Planck equations for the 

reversible isomerization reaction. Journal of Physical Chemistry A 2002;106:5063 

32. Tian T, Burrage K, Burrage PM, Carletti M. Stochastic delay differential 

equations for genetic regulatory networks. The Journal of Computational and 

Applied Mathematics 2007;205:696-707 

33. Maheshri N, O Shea EK. Living with Noisy Genes: How Cells Function Reliably 

with Inherent Variability in Gene Expression. Annual Review of Biophysics and 

Biomolecular Structure 2007;36:413-434 

34. Lipniacki T, Paszek P, Marciniak-Czochra A, Brasier AR, Kimmel M. 

Transcriptional stochasticity in gene expression. Journal of Theorectical Biology 

2006;238:348-367 

35. Savageau MA, Voit EO. Recasting nonlinear differential equations as S-systems: 

a canonical nonlinear form. Mathematical Biosciences 1987;87:31-113 



 63

36. Monk NAM. Oscillatory expression of Hes1, p53, and NF-kappaB driven by 

transcriptional time delays. Curr Biol 2003;13:1409 

37. Voit EO. S-system modeling of complex systems with chaotic input. 

Environmetrics 1993;4:153-186 

38. Longo D, Hasty J. Dynamics of single-cell gene expression. Molecular Systems 

Biology 2006;2 

39. Savageau MA. A theory of alternative designs for biochemical control systems. 

Biomed Biochim Acta 1985;44:875-880 

40. Irvine DH, Savageau MA. Network regulation of the immune response: 

alternative control points for suppressor modulation of effector lymphocytes. 

Journal of Immunology 1985;134 2100-2116. 

41. Hlavacek WS, Savageau MA. Rules for coupled expression of regulator and 

effector genes in inducible circuits. J Mol Biol 1996;255 121-139 

42. Alves R, Savageau MA. Effect of overall feedback inhibition in unbranched 

biosynthetic pathways. Biophysical Journal 2000 79 2290-2304 

43. Nagasaki M, Yamaguchi R, Yoshida R, et al. Genomic data assimilation for 

estimating hybrid functional Petri net from time-course gene expression data. 

Genome Informatics 2006;17:46-61 

44. Li C, Suzuki S, Ge Q-W, et al. Structural modeling and analysis of signaling 

pathways based on Petri nets. Journal of Bioinformatics and Computational 

Biology 2006;4:1119-1140 



 64

 

 

 

  

 

CHAPTER 3 

 
Integrative Biological Systems Modeling: Challenges and Opportunities 

Jialiang Wu and Eberhard O. Voit 

Frontiers of Computer Science in China, 2009 b. 3(1): p. 92-100. 
 

PAPER 2



 65

  

 
Integrative Biological Systems Modeling: Challenges and Opportunities 

 
JIALIANG WU 

Department of Mathematics, Bioinformatics Program, Georgia Institute of Technology,  

Atlanta, GA 30332, USA 

gtg337v@mail.gatech.edu 

EBERHARD VOIT* 

Integrative BioSystems Institute and 

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology 

Atlanta, GA 30332, USA 

eberhard.voit@bme.gatech.edu 
* Corresponding author 

Abstract 

Most biological systems are by nature hybrids consist of interacting discrete and 

continuous components, which may even operate on different time scales. It is therefore 

desirable to establish modeling frameworks that are capable of combining deterministic 

and stochastic, discrete and continuous, as well as multi-timescale features. In the context 

of molecular systems biology, an example for the need of such a combination is the 

investigation of integrated biological pathways that contain gene regulatory, metabolic 

and signaling components, which may operate at different time scales and involve on-off 

switches as well as stochastic effects. The implementation of integrated hybrid systems is 

not trivial because most software is limited to one or the other of the dichotomies above. 

In this study, we first review the motivation for hybrid modeling. Secondly, by using the 

example of a toggle switch model, we illustrate a recently developed modeling 

framework that is based on the combination of Biochemical Systems Theory (BST) and 

Hybrid Functional Petri Nets (HFPN). Finally, we discuss remaining challenges and 

future opportunities. 
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1. Introduction 

Several generic modeling frameworks have been developed during the past decades to 

predict the behavior of continuous, deterministic systems in biology and medicine. 

Among the best known are Biochemical Systems Theory (BST) (Savageau 1969; 

Savageau 1969; Savageau 1976; Voit 2000; Torres and Voit 2002), which was designed 

for dynamic and steady-state systems, and Metabolic Control Analysis (Kacser and Burns 

1973; Heinrich and Rapoport 1974; Fell 1997), which was originally limited to responses 

at the steady state but later augmented with the lin-log model formulation for dynamic 

analyses (Hatzimanikatis and Bailey 1996 ; Visser and Heijnen 2002; Wang, Ko et al. 

2007). Most dynamical approaches implicitly assume that relatively large numbers of 

molecules interact freely within a well-mixed medium. This assumption is important 

because it permits the application of methods of statistical mechanics, which allows 

averaged, continuous rates and, thus, the use of differential equations. However, many 

intracellular behaviors are discrete and some are apparently random in nature, for 

instance, because of low substrate concentrations or heterogeneous reaction 

environments. If these aspects cannot be validly ignored, the foundations of pure ordinary 

differential equation (ODE) representations present a significant limitation. As an 

alternative, some more recent modeling languages have been proposed to overcome this 

limitation. Examples include stochastic Petri Nets (Goss and Peccoud 1998; Haas 2002) 

and stochastic automata (D'Argenio and Katoen 2005). The stochastic approaches pose 

their own challenges and are usually less efficient than differential equation methods 

(Gillespie 1992; Gillespie 2007). The question thus arises of whether it is possible to 

combine the positive aspects of continuous, deterministic, and stochastic formulations 

and merge them into a unified, hybrid formalism. In this article, we discuss a promising 

combination of this type. We first identify more specifically the needs in integrative 

biological systems modeling, then outline a recently proposed, combined methodology, 
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based on BST and Hybrid Functional Petri Nets (HFPN) (Matsuno, Tanaka et al. 2003), 

and finally point out future directions and opportunities. Additional aspects and technical 

details, along with different types of examples, are presented elsewhere (Wu and Voit, 

2009). 

 

Rationale for Hybrid Modeling 

 

1.1 Stochasticity of biochemical reactions in vivo  

Deterministic modeling relies fundamentally on the law of mass action. This law is 

derived from the assumption that thousands of molecules interact within a well-mixed 

and homogeneous medium, which in some sense admits the laws governing ideal gases. 

Supposing that molecular reactions are essentially random processes, one infers that 

macroscopic systems with a large number of interacting molecules allow the randomness 

to be averaged out so that the overall macroscopic state of the system can be accurately 

approximated by the deterministic laws. However, the population sizes of some 

components in an individual cell are limited (sometimes numbering only a few 

hundreds), and reactants often interact on a small scale and within non-homogeneous 

cellular environments. These observations render the assumption of continuous and 

deterministic approaches questionable. A typical example is the regulation of gene 

expression where only a few transcription factors interact with DNA binding sites in the 

gene’s regulatory sequence. Indeed, fluorescent probes have identified fluctuations at the 

level of individual cells (Elowitz, Levine et al. 2002; Blake, Kaern et al. 2003), and one 

must wonder whether it is prudent and valid if these are averaged. Similarly, McAdams 

and Arkin (McAdams and Arkin 1997) showed that low copy numbers of expressed 

RNAs can be significant for the regulation of downstream pathways. Moreover, cellular 
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environments are highly compartmental and structured, which is far from the 

homogenous, well-mixed solutions that are typical of in vitro experiments (Schnell and 

Turner 2004). A high degree of molecular crowding and the presence of endogenous 

obstacles in cellular media have important consequences for the thermodynamics within 

the cell (Minton 1993; Minton 1998) and strongly affect the diffusion processes (Luby-

Phelps, Castle et al. 1987). For instance, the viscosity of the mitochondrion is 25–37 

times higher than that of a typical in vitro experimental buffer (Scalettar, Abney et al. 

1991). Diffusion of macromolecules in the cytoplasm can be 5–20 times lower than in 

saline solutions (Verkman 2002). Finally, rather than happening in a 3-dimensional 

volume, many reactions occur on two-dimensional membranes or in quasi-one-

dimensional channels (Clegg, 1984; Srere, Jones et al., 1989). Thus, caution is needed 

when assumptions are made with regard to homogeneity and well mixing in biochemical 

reaction systems in vivo. 

 Stochastic approaches try to capture the inherently random nature of molecular 

collisions and to construct probabilistic models of the reaction kinetics (Gillespie 1976; 

Qian and Elson 2002). If successful, such an approach is thus inherently more appropriate 

than averaging methods for the small, heterogonous environments that are typical of in 

vivo conditions (Kuthan 2001). In spite of their advantages, stochastic models are still not 

sufficient for small-scale biological systems, because they do not explicitly account for 

spatial heterogeneity and are difficult to implement analytically. Furthermore, stochastic 

methods present major, genuine challenges. For instance, their construction requires 

detailed biochemical knowledge, including kinetic rates and numbers of molecules. In 

later sections we shall discuss to what degree HFPN is a suitable framework for 

implementing, simulating, and analyzing stochastic effects in biological pathway 

systems. 
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1.2 Accounting for multiple time scales in biological systems  

Most models implicitly assume that the processes in biological systems run at similar 

time scales.  If this is true, the dynamics of a system by and large depends on its current 

state and can be formulated with ordinary differential equations.  In particular, the 

homogeneity of time scales implies that delay effects can be ignored. However, in reality, 

fast reactions (dimerization, phosphorylation, protein-DNA binding or unbinding) and 

slow reactions (transcription, translation, degradation) occur simultaneously, and they 

affect each other in multiple ways that critically influence their transient dynamics. For 

instance, it has been shown that delay within a feedback loop of mRNA transcription and 

protein expression can result in oscillatory expression patterns (Hirata, Yoshiura et al. 

2002; Monk 2003). Moreover, the combination of delays and positive feedback loops has 

been recognized as a mechanism that is able to maintain oscillatory expression patterns in 

noisy systems (Tian, Burrage et al. 2007). In the absence of a unifying modeling 

framework, any analysis of such a combination of stochastic and deterministic features 

has to be addressed through programming from scratch, which is seldom done. 

 

1.3 Combined models of continuous and discrete components in intracellular 

systems  

Biological systems often involve continuous and discrete phenomena side by side. For 

instance, gene transcription is switched on or off depending on the expression levels of 

other genes and on the presence or absence of transcription factors in sufficient 

quantities. The more or less continuous change in the concentration of a protein may 

trigger a discrete transition, such as the onset of mitosis or cell differentiation, which in 

turn changes the protein concentration. Hybrid methods easily address both discrete and 

continuous events within the same model. A hybrid approach is usually less 

computationally expensive than an exact discrete-event simulation and more accurate 

than continuous approximations, preserving the discrete or stochastic nature of the model 
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where it is important. Hybrid methods also lead to models in which the sources of 

stochastic behavior are more transparent, because the non-stochastic components are 

logically and computationally separated from the stochastic components (Kiehl, 

Mattheyses et al. 2004). These considerations make hybrid modeling of biological 

processes very appealing. Nonetheless, one must also realize the challenges encountered 

by hybrid modeling for biological phenomenon: a) the partition of a system into discrete 

and continuous parts sometimes needs to be done dynamically; the hybrid modeling 

framework should provide automatic classification mechanisms; and b) the control of the 

communication between the discrete and continuous components is complicated; it 

should run in the background without burdening the modeler.  

 

2. Methods  

Modeling a regulated network requires a precise description of network components and 

their interactions. Two “extreme” conceptual frameworks for modeling mathematical 

pathway systems are commonly used: a) Deterministic mass action models and their 

generalizations, which are represented by ordinary differential equations, where reaction 

rates depend continuously on changes in the participating species over time. b) Stochastic 

models and simulations of biochemical reaction networks based on the Chemical Master 

Equation or stochastic differential equations (Gillespie 2007).  Here we show how to 

merge these two streams into a synergetic uniform framework for integrative biological 

systems analysis. 

 

2.1 Biochemical Systems Theory; GMA Systems and S-systems  

Among the deterministic models, Biochemical Systems Theory (BST) is one of the best 

established and most general modeling frameworks (Voit 2000).  The basis of BST is the 

use the power-law functions to approximate all processes in the system.  For instance, in 
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metabolic systems, all enzyme-catalyzed reactions are represented as power-laws that 

contain a rate constant and all contributing substrates, enzymes, and modifiers, each 

raised to a real-valued power, the kinetic order. Most prominent among the “canonical 

models” within BST are Generalized Mass Action (GMA) and S-system models; their 

respective formats are shown in Equations (1)-(3). 
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While models within BST consist strictly of systems of ODEs, Mocek et al. 

showed that processes with simple, constant delays can be approximated within the BST 

format with arbitrary accuracy (Mocek, Rudnicki et al. 2005). Wu and Voit recently 

extended Mocek’s method to allow delays of different types, including multiple discrete 

delays, distributed delays, time dependent delays and random delays (Wu and Voit, 

2009).   
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Other biological formalisms based on differential equations have been developed 

for pathway representation and simulation, but we will focus here exclusively on BST 

models.  Among non-ODE-based approaches of network analysis, Boolean methods, 

graph methods, and Petri Nets have received some attention.  Since Boolean methods and 

graph methods do not appropriately represent feedback signals and other nonlinearities, 

we only mention these approaches here without further pursuing them.  

 

2.2 Petri Net Modeling 

A Petri Net is a mathematical construct that graphically, and then formally, depicts a 

system with concurrent processes and properties. Originally designed for discrete 

systems, Petri Nets have recently been extended to account for hybrid systems containing 

both discrete and continuous events. These Hybrid Functional Petri Nets (HFPN) can be 

simulated conveniently with the software package Cell Illustrator (Miyano 2008).  

 

2.3 Implementing a BST Model in HFPN 

As indicated in Fig.1, it is straightforward to implement a BST model in the HFPN 

framework: each dependent and independent variable in BST is represented in the Petri 

Net by a continuous place with the name of the molecular species. Every positive term in 

the BST differential equations is the speed of an input transition and every negative term 

the speed of an output transition. Direct connectivity is only included between places 

between which there is mass flow. In HFPN, a continuous place is graphically 

represented by double-ringed circle, and a continuous transition by an open rectangle.  
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 In parallel work  (Wu and Voit, 2009) we developed a hybrid approach combining 

BST and HFPN, which allows the simulation of biological systems containing different 

types of non-trivial effects, including feedback regulations, switches, randomness, and 

various delays. Here we illustrate the advantages and opportunities of this hybrid method 

with a generic example from the area of gene regulation. 

3. Illustration: Genetic Toggle Switch 

The SOS signaling pathway allows bacteria and higher organisms to respond to a variety 

of stresses in a coordinated fashion. Gardner et al. (Gardner, Cantor et al. 2000) studied 

this pathway in E. coli cells that responded to DNA damage caused by the exposure to 

mitomycin C (MMC). A critical component for the functionality of the SOS pathway is a 

genetic toggle switch that is composed of two genes, lacI and λ cI, which encode two 

repressor proteins LacR and λ CI, respectively. As sketched in Fig. 2, the lacI gene is 

expressed in the presence of promoter PL, which is repressed by λ CI. Similarly, the λ cI 

gene is expressed in the presence of promoter Ptrc, which is repressed by LacR. This 

“symmetric” gene regulatory system has two stable steady states. When the expression 

level of lacI is high, the λ cI expression level is low, and vice versa. An external signal 

Fig. 3.1 GMA system and its HFPN representation. 
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may trigger transitions between the steady states. Specifically, in the experiments of 

Gardner and collaborators (Gardner, Cantor et al. 2000), exposure to MMC leads to the 

activation of protein RecA, which in turn cleaves the repressor protein λ CI, thereby 

releasing repression and resulting in increased expression of gene lacI. Under their 

chosen experimental conditions, due to noise, some cells will trigger the genetic switch 

while others don’t, resulting in a bimodal population distribution. By contrast, if there is 

no SOS signal, noise alone rarely transfers the system from one steady state to another 

and a unimodal population is observed. 

Gardner’s goup (Gardner, Cantor et al. 2000) proposed a deterministic model (Eq. 

(1)) which successfully characterized the conditions under which the genetic toggle 

switch expresses two distinct steady states. However, being a deterministic model, the 

model cannot simulate experimental results where different cells undergo different 

genetic switching under the same experimental conditions. Based on this deterministic 

model, Tian and Burrage (Tian and Burrage 2006) proposed a stochastic model (Eqs.(4) 

and (5)) to realize experimental results with bimodal population distributions with regard 

to the expression levels of LacR. We use this model here for demonstration.  Even though 

it is not directly in BST format, it could easily be reformulated as such (Savageau and 

Voit 1987; Voit 2005) and indicates the general procedure of including kinetic, dynamic 

modeling and stochasticity into the same HFPN framework. 

 

PL

Ptrc

lacIλ cI

RecAMMC
(DNA damage)
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Fig. 3.2: Genetic toggle switch associated with the SOS signaling pathway (adapted from (Tian and 

Burrage 2006)) 
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In Eqs. (4) and (5), u and v are the numbers of λ CI and LacR molecules 

respectively. α1 and α1+ β1 represent the basal and maximal rates of λ CI synthesis from 

the Ptrc  promoter, respectively, and α2, α2+ β2  are the equivalent parameters for LacR 

expression from the PL promoter, respectively. The parameter ε is associated with the 

copy number of the toggle switch plasmid, while parameter s represents the effect of 

MMC on the degradation of λ CI. Tian and Burrage used the following parameter values: 

α1=α2=0.2 μM min-1, β1=β2= 4 μM min-1, ε=1, d1= d2=1 min-1, K1= K2=1 μM, and γ=1 

min-1.  
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Fig. 2 Toggle switch’s HFPN representation of Equ. [4], as depicted in Cell 
Illustrator(Miyano 2008). 
Fig. 3.3 HFPN representation of the ODE portion of the toggle switch (Eq.(4)), as depicted in Cell 
Illustrator (Miyano 2008). 
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It is fairly simple to convert Eqs. (4) and (5) into a corresponding HFPN model of the 

toggle switch. In Figs. 3 and 4, the transitions p1 and p2 are the production and 

degradation processes of λ CI, respectively, and p3 and p4 are those of LacR, 

respectively. Place variables m1 and m2 represent the numbers of λ CI and LacR 

molecules respectively, each with corresponding initial values 2125/500 and 125/500. We 

programmed the SOS signaling effect on the transition p2: when the SOS signal is 

applied in (60, 960), the degradation rate is 1
1(1 )s m1++ , otherwise the degradation rate is 

d1m1. The Poisson numbers needed for the transitions p1 through p4 (see Fig.4) were 

generated by a short script. 

 

Fig. 3.4 HFPN representation the stochastic portion of the toggle switch (Eq.(5)), as depicted in 
Cell Illustrator (Miyano 2008). 
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Fig. 3.5 Simulations of the genetic toggle switch as it is affected by the SOS signaling pathway   (A) 

Deterministic model (Eq. (4)) with s=1.3 and d1 switching at t=60 and t=960 during MMC exposure (see 

Text); no switch occurs for s ≤2.0. (B) Deterministic model (Eq. (4)) with s=2.2; a single switch occurs. (C) 

Stochastic HFPN model (Eqs. (5)) corresponding to the deterministic model in (A); in spite of noise, no 

switch occurs. (D) The same stochastic HFPN model, with the same degradation rate and the same noise 

structure as in (C), may lead to a switch. Dark and grey lines show λ CI and LacR, respectively. The values 

of both λ CI and LacR are scaled by 1/500. 

 

Corresponding to the experimental exposure regimen with various concentrations 

of MMC, the degradation rate of λ CI is d1=1 when t is in [0, 60] and t ≥ 960, and d1+ 

γs/(1+s) when t is in [60, 960]. The large change in rate triggers a shift in the system from 

the steady state to an intermediate state in both the deterministic and stochastic 

simulations. In the deterministic simulations, there is no genetic switching for s ≤ 2.0, but 
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switching may occur for s > 2.0 if the concentration of λ CI is below some threshold 

value (Fig.5 B, s= 2.2). The situation in the stochastic simulations is different: when the 

system enters into the unstable intermediate state where λ CI ≈ 2.3 and LacR ≈ 0.5, 

intrinsic noise can be sufficient to switch the system from the intermediate unstable state 

to the other steady state where λ CI ≈ 0.26 and LacR ≈ 4.1. For the same s=1.3, the noise 

may cause a genetic switch in one simulation (Fig. 5 D) but not in another (Fig. 5 C). If 

the transition between the steady states does not happen during [60, 960], the system will 

jump back to the initial steady state. 

 

Fig. 3.6 Alternative HFPN model of the toggle switch with direct implementation of Gaussian noise, 

as depicted by Cell Illustrator (Miyano 2008). 

 

Instead of setting up stochastic equations as before, it is possible to enter stochasticity 

directly into the HFPN model. Fig. 6 shows an alternative way to model the toggle switch 

through HFPN in a very intuitive way: continuous place variables m2 and m4 represent 

the numbers of λ CI and LacR molecules respectively; transitions p3 and p2 respectively 
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describe the basal and major production of LacR, where “basal” is the production rate 

when LacR is inhibited by λ CI and “major” is the rate added to the basal part when there 

is no inhibition; p10 and p1 are equivalent transitions forλ CI. The degradation of λ CI 

consists of two parts: Dλ cI is the degradation rate under normal physiological situation 

and p9 is the additional rate during [60, 960] when MMC is applied and the SOS 

signaling is in action. (The control on p9 is realized through a script, similar for p3). 

DLacR is the degradation process for LacR. As shown in the figure, Gaussian noise is 

added to the production processes of λ CI and LacR through a Cell Illustrator function 

SMass(mean, stdv). 
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Fig. 3.7 Simulations of the toggle switch with the alternate HFPN model in Fig. 5. (A) No genetic 

switch occurs in the (deterministic) model without noise. (B) Even with Gaussian noise of standard 
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deviation 0.2, there is no switch in this simulation. (C, D) With the same Gaussian noise of standard 

deviation 0.2 as in (B), a switch appears in both simulations, but at different times. The dark lines are 

for λ CI, and the grey lines for LacR. The values of both λ CI and LacR are scaled by 1/500. 

 

 

The results (Figs. 5 and 7) demonstrate the potentially crucial effects of stochasticity on 

the toggle switch: when the system is in an unstable intermediate state, noise may or may 

not cause the system to switch to a different stable state. One should note that the 

simulation results are strongly affected by the simulation settings. For instance, switches 

occur for most of the simulations for a larger sampling interval, say 0.5, where noise 

more easily accumulates to a degree sufficient to trigger a switch, but switches rarely 

appear when the sampling interval is small, say 0.01. The probable reason is that the 

sampling interval not only “controls the simulation accuracy and performance” so that 

“the smaller the sampling interval, the higher the accuracy,” as mentioned in the Cell 

Illustrator user manual (Miyano 2008), but that it also controls the frequency of the noise: 

the smaller the sampling interval, the more often a stochastic sample is added to the 

system, resulting in a higher noise frequency. It is therefore crucial to determine 

simulation settings that correspond closely to the observations in vivo. If the settings are 

appropriate, the model yields the percentages of switched cells under different 

physiological situations or stimuli, such as the degree of noise and the effect strength of 

SOS signaling.  

 

4. Challenges and Future Developments 

The previous sections have indicated that hybrid BST modeling within a Petri Net 

framework can have significant advantages, because the ease of model design and 

analysis in BST is easily connected to discrete and stochastic features.  For a full and 

effective implementation, four challenges still have to be overcome. 
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Challenge 1: Analysis of functional properties of hybrid systems  

Once each phase of the modeling process has been formulated, the resulting hybrid model 

needs to be analyzed with algebraic and computational means for consistency, stability, 

robustness, responsiveness, and other criteria of functional effectiveness. There are 

powerful theorems and effective tools for linear systems, but they are much fewer for 

nonlinear systems, and there is an even greater need for theorems and methods for hybrid 

systems. This issue could be addressed in two complimentary ways: model checking and 

simulation. 

Given experimental data, a hybrid model represents a hypothetical mechanism 

that results in simulation data. On one hand, due to non-deterministic features, 

simulations will yield different results and it is therefore impossible to check, by 

executing the model, whether all possible outcomes conform to the data (Clarke, 

Grumberg et al. 1999 ). Through a search strategy, model checking systematically 

analyzes all classes of the infinitely many possible outcomes of the computational model 

without executing them one by one. On the other hand, formal analysis, such as model 

checking, is usually restricted or unavailable for hybrid systems. In these cases, rather 

than performing an exhaustive analysis, it is more practical to construct a model and 

perform simulations. For such simulations, the accuracy and efficiency of numerical 

integration techniques are critical. For instance, imprecise numerical integration might 

cause a discrete event. Simply shrinking the step size is not a sure solution because it will 

greatly increase the simulation time yet does not guarantee the elimination of this kind of 

simulation error. Moreover, because the system could have infinite numbers of discrete 

transitions in finite time, the simulation may not be able to converge and hence the 

solution for a hybrid system may not exist or be unique. Therefore, it is necessary to 

develop a complementary strategy that applies model checking and simulation 

intelligently. In the future one should address the following problems in the HFPN 
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extension of BST models: how can one characterize situations where model checking and 

simulation can be applied respectively? What are the situations where both of these two 

methods can be applied to yield complementary insights? For other situations than those 

above, what can be done?  One possible strategy will be to “divide and conquer”: divide a 

hybrid system into deterministic and stochastic parts, analyze every part’s properties and 

then seek to integrate the combined affects.  

 

 

Challenge 2: Parameter estimation  

Although many estimation methods are available for discrete or continuous models, 

parameter estimation remains one of the most challenging tasks for hybrid modeling 

efforts. A natural attempt is to distinguish parameters for the continuous and discrete 

parts of hybrid models. Nagasaki et al. (Nagasaki, Yamaguchi et al. 2006) applied a 

method called data assimilation (DA) to estimate parameters and identify the structure of 

a small-sized HFPN model from time-course gene expression data. However, their 

success was limited to an ODE model, and a true hybrid model (containing discrete and 

continuous, deterministic and stochastic effects) has yet to be addressed.  

 Parameter estimation becomes a real computational challenge when the number of 

unknown parameters is large, the search space is large, and the error surface contains 

many local minima. A natural first attempt appears to be to try to decompose a large 

pathway model into small, independent components and estimate the parameters for each 

component separately. This idea of model decomposition for parameter estimation has 

been successfully applied in many areas, such as Bayesian model learning (Neapolitan 

2003), geometric curve fitting (Jiang, Cheng et al. 2005), and the control of large 

dynamical systems (Williams and Millar 1998). Koh et al. (Koh, Teong et al. 2006) 

recently used model decomposition in the context of HFPN. Here an independent 

component means an executable sub-graph which can be simulated as a model by itself, 
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given all the parameters and initial condition relative to the nodes of this sub-graph. The 

independent components may be identified by either of the following methods which can 

be actualized automatically by an algorithm: A) If a place node belongs to a given 

component, then all its incoming transitions (via normal arcs, instead of inhibitory or 

testing arcs) must also belong to this component. B) If a transition is present in a 

component, then all of its input places must also be in this component. This type of 

decomposition method is most effective when the flow of information is unidirectional 

and feedback loops are short. If the pathway components are tightly coupled or if there 

are long feedback loops, the entire pathway could be returned as a single component. 

Thus it needs to be explored in which situations it is feasible to find pathways that can be 

decomposed into a reasonable number of independent, smaller components.  

 

Challenge 3: Computational efficiency of hybrid modeling. 

Our case studies here and in (Wu and Voit, 2009) indicate that the time to compute 

HFPN models with Cell Illustrator is many times longer than that of a regular ODE 

solver. Moreover, the computation time is not directly related to whether the models are 

deterministic or stochastic, continuous or discrete, but rather by the number of transitions 

and the computational burden associated with them. Thus, it is necessary to characterize 

the determinants of computational speed and to improve on the slowest processes.  

 

Challenge 4: Discovery of design principles.  

The special structure of the equations in BST system offers an elegant way for the 

discovery of design principles in biological models, called the method of controlled 

mathematical comparison (MCMC): the investigated pathway is compared with an 

alternative, hypothetical pathway that differs in just one particular regulatory or 

operational feature, so that the difference in responses can be contributed to that feature 

of interest (e.g., (Alves and Savageau 2000)). Because the proposed hybrid models 
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constitute a BST extension with some discrete and possibly stochastic components, it 

seems feasible to apply MCMC to the hybrid system in order to evaluate the effects of a 

particular feature in comparison to systems without this feature.  For instance, the 

importance of stochasticity may be assessed in comparison to the corresponding 

deterministic model. 
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Abstract 

 

Dopamine is a critical neurotransmitter for the normal functioning of the central nervous 

system. Abnormal dopamine signal transmission in the brain has been implicated in 

diseases such as Parkinson’s disease (PD) and schizophrenia, as well as in various types 

of drug addition. It is therefore important to understand the dopamine signaling dynamics 

in the presynaptic neuron of the striatum and the synaptic cleft, where dopamine 

synthesis, degradation, compartmentalization, release, reuptake, and numerous regulatory 

processes occur. The biochemical and biological processes governing this dynamics 

consist of interacting discrete and continuous components, operate at different time 

scales, and must function effectively in spite of intrinsic stochasticity and external 

perturbations. Not fitting into the realm of purely deterministic phenomena, the hybrid 

nature of the system requires special means of mathematical modeling, simulation and 

analysis. We show here how hybrid functional Petri-nets (HFPNs) and the software Cell 

Illustrator® facilitate computational analyses of systems that simultaneously contain 

deterministic, stochastic, and delay components. We evaluate the robustness of dopamine 

signaling in the presence of delays and noise and discuss implications for normal and 

abnormal states of the system. 

 

1. Introduction 

Dopamine is a neurotransmitter of enormous physiological, pathological, and 

pharmacological importance. It is a crucial contributor to several diseases, such as 

Parkinson’s disease (PD) and schizophrenia. Dopamine is furthermore associated with 

addiction to a variety of drugs, because it has a direct effect on the body’s reward system. 

PD is the most common neurodegenerative movement disorder, affecting more than 1% 

of the world population of age 65 or higher (Olanow and Tatton 1999; von 
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Campenhausen, Bornschein et al. 2005). Because loss of dopaminergic neurons is 

responsible for the majority of the motor symptoms of Parkinson’s disease, treatment 

options have mostly targeted the restoration of dopamine function by replacement of 

dopamine precursors, administration of dopamine agonists, or inhibition of its 

degradative enzymes.  

Schizophrenia is a mental disorder with a worldwide lifetime prevalence of about 

0.7%. As with PD, the large number of schizophrenia cases translates into enormous 

economical and societal losses (MacDonald and Schulz 2009). While the root causes of 

schizophrenia are still obscure, the so-called dopamine hypothesis suggests that dopamine 

imbalance is the underlying mechanism for symptoms of the disease. Accordingly, the 

main medication has been the administration of antipsychotics that reduce dopaminergic 

activity through blockade of the dopamine D2 receptor. Finally, the dopamine signaling 

system is compromised in many types of drug addiction, for instance to cocaine or 

methamphetamine, either through competition between the drug and dopamine in the 

presynaptic neuron or by competition for receptors exposed to the synaptic cleft. 

The abnormal activity of dopamine signaling in PD, schizophrenia, and drug 

addiction demonstrates the important role of dopamine dynamics in the presynaptic 

neuron of the striatum and the synaptic cleft, where dopamine synthesis, degradation, 

compartmentalization, release, reuptake, and numerous regulatory processes occur 

(Figure 1). On the presynaptic side, the biosynthetic dopamine pathway begins with the 

precursor tyrosine, which is converted into L-DOPA and subsequently into the key 

neurotransmitter dopamine. Dopamine is packed into intracellular vesicles by the 

vesicular monoamine transporter. The packed dopamine is released into the synaptic 

cleft, where it can bind to dopamine receptors on the postsynaptic membrane. Some of 

the dopamine in the cleft also diffuses out of the cleft, or is transported back into the 

cytosol of the presynaptic neuron by the dopamine transporter. In addition to this cycle, 
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dopamine can be degraded by the enzymes catechol O-methyltransferase and monoamine 

oxidase. 

Under normal, unstimulated conditions, relatively small amounts of dopamine cycle 

between the presynaptic cytosol, vesicle, and synaptic cleft. However, if there is a 

stimulus, an action potential is produced at the dopaminergic terminal and induces 

calcium influx into the cytosol. The calcium influx spikes dopamine release into the cleft, 

where the neurotransmitter binds to its receptor on the postsynaptic membrane. Inside the 

postsynapse, various downstream signaling cascades are triggered, and the signal is 

successfully transduced.  

The functionality of dopaminergic neurons is altered when these are exposed to 

certain drugs like amphetamine and methamphetamine. According to current 

observations, amphetamine and methamphetamine cause dopamine to leak from the 

vesicles into the cytosol, resulting in significant increases in the cytosolic dopamine level. 

This excess consequently produces an efflux of dopamine into the synaptic cleft through 

dopamine transporters instead of the reverse flux that is typical for intact neuron (Sulzer, 

Chen et al. 1995; McCann, Wong et al. 1998; Schmitz, Lee et al. 2001; Hanson, Sandoval 

et al. 2004). At the same time, amphetamine and methamphetamine regulate the 

generation and degradation of dopamine (Costa, Groppetti et al. 1972; Sulzer, Sonders et 

al. 2005). Through these mechanisms, the drugs substantially alter the neurotransmission 

characteristics of the dopaminergic synapse.  

The dopamine recycling process involves neurotransmitter packaging, release, 

binding, disassociation, and reuptake. Some of the biological steps associated with these 

processes take an appreciable amount of time to perform, thereby in effect causing 

delays. Since these delays must be expected to affect the dynamics of dopamine 

transmission, and since such effects might be different between intact and diseased 

systems, it is important to study the consequences of delays on dopamine transmission 

systematically. Moreover, like most every biological process, dopamine signaling is 
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subject to germane stochasticity and external perturbations. For example, the rate of an 

enzymatic or transport process is typically considered constant, leading to a deterministic 

kinetic description. However, in reality the dynamics of the reaction is a random process, 

which is strongly exacerbated if only small numbers of reactants are involved (e.g., 

(Goutsias 2007)). Accounting for stochasticity in a dynamic system requires specialized 

software, and if the system also contains delays, it is difficult to find a suitable modeling 

framework, along with supporting software. We show here how Hybrid Functional Petri 

Nets (HFPNs) and the software Cell Illustrator® facilitate the computational analysis of 

systems that contain deterministic, stochastic, and delay components and demonstrate 

their utility with an analysis of dopamine signaling. The model describing these aspects 

has been submitted to a publically accessible model database (see  (Wu, Qi et al. 2009)). 

 

 

 

Figure 4.1 The chemical synapse of a dopaminergic neuron and its role in signal transduction. 
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The top part of the diagram schematically shows key features of the dopamine pathway in the presynapse 

and, below, in the synaptic cleft of the dopaminergic neuron. Blue triangles represent the neurotransmitter 

dopamine, while red circles indicate calcium (Ca++) ions. An external stimulus triggers an action potential 

at the dopaminergic terminal and induces calcium influx into the cytosol. The calcium influx spikes 

dopamine release into the cleft, where the neurotransmitter binds to its receptor on the postsynaptic 

membrane. Inside the postsynapse, various downstream signaling cascades are triggered, and the signal is 

successfully transduced. 

 

 

2. Methods  

 

The dopamine signaling system as described above consists of interacting discrete and 

continuous components and processes that operate at different time scales. The hybrid 

nature of this system requires special means of analysis, because it does not fit neatly into 

the realm of deterministic models, where sets of ordinary differential equations (ODEs) 

are used to represent the continuous changes of the participating system components over 

time. Furthermore, the system is too complicated to permit comprehensive stochastic 

models and simulations that are based on the Chemical Master Equation, even if these are 

implemented as stochastic kinetic systems in advanced versions of the Gillespie 

algorithm (Gillespie 2007). Instead, it is necessary to develop a hybrid modeling 

methodology that allows us to merge seamlessly the deterministic and stochastic aspects 

of the system into a unifying framework for integrative systems analyses. A good 

candidate for this task is a Hybrid Functional Petri Net (HFPN, (Nagasaki, Doi et al. 

2003)). In previous work, we showed that HFPNs can be combined effectively with 

methods of Biochemical Systems Theory (BST; (Voit 2000)) for the analysis of largely 

continuous systems, which however are affected significantly by delays and stochastic 

noise (Wu and Voit 2009 a; Wu and Voit 2009 b).  We show here how this hybrid 

methodology can be used to explore the performance of the dopamine signaling system 
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under typical perturbations as well as under disturbances from noise and delays. The 

starting point for the analysis is an entirely deterministic model (Qi, Miller et al. 2008) 

that captured the dopamine dynamics quite well, but did not account for stochastic 

perturbations. 

 

2.1 Biochemical Systems Theory  

Biochemical Systems Theory (BST) is a firmly established mathematical modeling 

framework for the analysis of biological systems.  BST is based on ordinary differential 

equations in which all dynamical processes are represented with products of power-law 

functions. Each of these functions consists of a non-negative rate constant, as a 

multiplicative coefficient, and of all contributing substrates, enzymes, and modifiers as 

variables. Each variable is raised to a real-valued kinetic order that quantifies the effect 

of the variable on a given reaction. A positive kinetic order signifies activation, while a 

negative value signifies inhibition and a value of zero corresponds to no contribution at 

all. BST permits several variants, among which the format of a Generalized Mass Action 

(GMA) system is most intuitive. In this format, each process is separately represented by 

a power-law term, while the alternative S-system format first groups all influxes and all 

effluxes into one term each (Shiraishi and Savageau 1992). The GMA format directly 

reflects the stoichiometric connectivity of the system and also indicates in its kinetic 

orders the strengths of interactions among the system variables. Its generic format is thus  
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where variable Xi is affected by Pi production and Qi degradation processes; aip  and biq  

are rate constants, while fipj  and giqj are kinetic orders. 
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 While models within BST consist entirely of ODEs, Mocek et al. showed that 

processes with a constant delay can be approximated with arbitrary accuracy within the 

BST format (Mocek, Rudnicki et al. 2005). This approximation is accomplished through 

the introduction of auxiliary variables and equations, which however do not require 

additional biological parameters. Wu and Voit further extended Mocek’s method to allow 

for multiple delays of different types, including discrete, distributed, time dependent, and 

random delays (Wu and Voit 2009 a).   

 

 

2.2 Implementation of a GMA model as a Hybrid Functional Petri Net  

A Petri net is a mathematical modeling tool for the representation of systems with 

concurrent processes. One appealing feature is the graphical depiction of all system 

components and processes, which facilitates intuitive, targeted manipulations and 

simulations. Originally designed for discrete systems, Petri nets have recently been 

extended to account for hybrid systems combining both discrete and continuous events. 

These Hybrid Functional Petri Nets ( HFPN) (Nagasaki, Doi et al. 2003) can be simulated 

conveniently with the software package Cell Illustrator (Miyano 2008).  

As indicated in Figure 2, it is straightforward to implement a GMA model in the 

HFPN framework: each time dependent variable Xi is represented in the HFPN as a 

continuous place with the name of the molecular species, whereas every time 

independent variable is coded either as a discrete or continuous place, depending on its 

value type. Every production term 
1

ijp
n

f
ip j

j

a X
=
∏  associated with variable Xi is regarded as 

the speed of an input transition for Xi and every degradation term 
1

ijq
n

g
iq j

j

b X
=
∏  is regarded 

as the speed of an output transition. According to Petri Net philosophy, direct 

connectivity exclusively reflects mass flow between places. A continuous place is 
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graphically represented by a double-lined circle, and a continuous transition by an open 

rectangle. By contrast, a discrete place is depicted by a single-lined circle and a discrete 

transition by a solid rectangle.    

 

  

 

 

2.3 Representation of delays and noise in the model of dopamine dynamics 

In previous work (Wu and Voit 2009 a; Wu and Voit 2009 b) we developed a hybrid 

approach combining BST and HFPN that facilitates simulations of biological systems 

containing different effects, including feedback regulations, switches, randomness, and 

various delays. This modeling strategy can be applied directly to the dopamine signaling 

system of interest here.   

 The main delay in the dopamine system is due to the fact that the transport of 

vesicular dopamine to the synaptic cleft is slower than the biochemical reactions that are 

governing dopamine biosynthesis and degradation (Qi, Miller et al. 2008). Specifically, 

an appropriate signal received by the presynapse causes vesicle movement and an 

Fig. 4.2 Generic GMA system and its HFPN representation. 
Each continuous variable Xi is represented by a double-lined circle, while the 
continuous transitions are given as open rectangles. 
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upsurge in dopamine release from the vesicle (modeled as the DA-v pool) into the 

extracellular, synaptic pool (modeled as DA-e), where it serves as a signaling molecule 

that binds to specific receptors on the postsynaptic membrane (see Fig. 1). Figure 3 

shows the HFPN implementation of the delay due to dopamine translocation, as well as 

the representation of stochastic variations in the dopamine flux.  Because the exact extent 

of the delay and the magnitude of stochastic noise are not known, we will explore several 

scenarios that appear to be most relevant. The HFPN implementation of the dopamine 

signaling model with noise and delays has been submitted to a publically accessible 

database of models (see (Wu, Qi et al. 2009)). 

 

  
 

Figure 4.3 Implementation of noisy and delayed processes in a hybrid GMA-HFPN model.  

Top panel: The diagram indicates a mechanism with which we simulate random perturbations. The 

procedure generates a sequence of random numbers, representing noise N of frequency f and amplitude 

Amp. SMass(1, Amp) is a Cell Illustrator function producing Gaussian distributed random numbers with 

mean 1 and standard deviation Amp. Center panel: The diagram indicates how a non-delayed flux with rate 

constant r is affected by noise N. Bottom panel: On the left, noise is applied to dopamine release. On the 

right, delay is assumed to have happened during dopamine translocation, and Ndelay and Xl_delay are the 

delayed values of N and Xl, respectively. Due to space limitations, the specific implementation of delays is 
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not shown here; however, it follows directly the principles discussed in (Wu and Voit 2009 a; Wu and Voit 

2009 b). It is noted that the creation of noise can also be accomplished with generic elements in the more 

flexible HFPNe variant of hybrid Petri nets. 

 

2.4 Simulation of dopamine flux in response to calcium signals 

As indicated in Figure 1, the presynaptic neuron receives signals from other neurons in 

the form of action potentials, which in turn lead to a rapid calcium influx that ultimately 

causes a release of dopamine from the presynaptic vesicle pool (DA-v) into the 

extracellular pool (DA-e). The mechanistic details of this Hodgkin-Huxley type 

activation are immaterial here, and only the overall effect needs to be modeled.  

Typically, the dopamine response follows a regular train of signals, which is often 

described as a spiking pattern. To represent this repeated triggering effect in our model, 

we multiply dopamine efflux (from DA-v to DA-e) with the following function: 
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The function has a baseline level of 1, which represents the resting state of the signaling 

system. A true signal appears during the time window [t0, t0 + w1], where it rises and falls 

according to the positive portion of the sine function and up to a maximum height of 

(1+bolus). For a train of n signals, we assume the distance between two subsequent 

signals to be w2. According to (Sun, Wu et al. 2002), realistic values for w1 and w2 are at 

the order of tens or hundreds of milliseconds (ms) and a suitable bolus value is between 

20 and 40.  
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3. Results 

 

3.1 Effects of different delays 

Most steps in the dopamine signaling system are biochemical reactions, and therefore 

fast. In comparison, the movement of vesicles, their attachment to the presynaptic 

membrane, and the subsequent release of dopamine into the synaptic cleft are slower. As 

detailed in the Methods Section, we model this relatively slow process with a time delay 

(Ryan, Smith et al. 1996). Zhang and coworkers (Zhang, Li et al. 2009) suggested that the 

most relevant range for this delay is between tens and a few hundred milliseconds. We 

investigated the effects of different delays within this range in two typical signaling 

scenarios, as shown in Figures 4 and 5.   

 When the distance between subsequent signals and the signal width are equal or 

similar (e.g., w1=0.01s and w2=0.01s in Fig. 4), the extracellular dopamine accumulates in 

the form of a single extended peak, consisting of a fast rise and a relatively slow return to 

the baseline.  

 If the distance between two consecutive signals is much greater than the signal 

width (e.g., w1=0.01s and w2=0.2s in Fig. 5), the dopamine responses consist of 

individual, separated peaks.  
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Figure 4.4 Effects of different delays on dopamine signaling.  

Lower panel: Train of 10 signals with w1=0.01s w2=0.01s, and bolus=20. Upper panel: The response to the 

signal train is a single, extended peak of extracellular dopamine (DA-e). The peak is ragged for no or small 

delays, but essentially smooth for longer delays. 
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Figure 4.5  Effects of delays when signals are sparse.  

Lower panel: Train of 10 signals with w1=0.01s, w2=0.2s and bolus=20. Upper panel: DA-e responds in the 

form of 10 separated peaks. Different delays (line colors as in Figure 4) result in some smoothing in the 

responses, but the peaks remain separated.  

 

 

As demonstrated in Figures 4 and 5, the dopamine system with realistic delays has the 

following features: 

 

1. The larger the delay is, the more the peaks of response are reduced in height.  

2. The larger the delay is, the less the valleys between peaks are pronounced.  
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These two features imply that large delays may lead to impairments in the efficiency of 

the signaling system and that it is possible that signals are lost in the process. Although 

the delayed responses may have a similar appearance as the responses in the non-delayed 

system, it is possible that the delayed responses no longer exceed the necessary threshold 

that is typical for signal transduction in all-or-nothing responses of neurons. For instance, 

if the threshold in Fig. 5 is 165% of the baseline value, the non-delayed system has ten 

effective responses (as seen in separable peaks above the threshold line), among which 

one lasts for 0.07s and the other nine between 0.15s to 0.2s. By contrast, when the 

dopamine release is delayed by 0.1s, the system only fires twice: once for 0.17s and once 

for 1.7s. The abnormally long second peak is the result of merging peaks and the fact that 

the last eight responses do not fall below the threshold.  

 As a second scenario, suppose that the threshold is 210% of the baseline. In this 

case, the non-delayed system fires nine signals, lasting from 0.02s to 0.04s, whereas there 

is no effective response at all when delay is 0.1s. Some representative results are 

summarized in Table 1. While these results show that delays may affect signaling 

accuracy, one should also note that the system does retain its signaling capacity if the 

delay is relatively short (such as 0.01s in our simulations) and if the threshold is 

positioned differently, for instance, at 185% of the baseline value.  

 

Table 4.1 The number of effective responses changes with different delays 

 

 Non-delayed 0.01s delay 0.05s delay 0.100 s delay 

165% baseline 10 10 3 2 

185% baseline 9 9 9 9 

210% baseline 9 9 8 0 
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3.2 Effects of stochastic noise 

Signal transduction in the dopamine system depends on the attachment of vesicles to the 

presynaptic membrane and their subsequent release of dopamine into the synaptic cleft 

(Fernández-Alfonso and Ryan 2006). Of course, the intracellular environment is 

heterogeneous, and changes in metabolic state, temperature, and pH, as well as various 

crowding effects must be expected to create stochasticity that cannot be ignored in the 

context of vesicle dynamics and dopamine release. Because the details of stochasticity in 

the cytosol cannot be characterized in mechanistic detail, it seems reasonable to let the 

simulations account for randomness in the dopamine flux from the vesicle pool to the 

synaptic cleft. This section addresses the effects of this stochasticity with an exploration 

of noise of different frequencies and amplitudes.  

 Most processes in dopamine signal transduction are fast, with events such as 

biochemical reactions and ion flux transduction lasting from several milliseconds to tens 

of milliseconds. The randomness of such fast events results in noise of high frequency 

which is at the order of about one hundred Hertz. At the same time, there are also much 

slower events such as vesicle exocytosis, which may last for one hundred or more 

milliseconds and whose stochasticity corresponds to noise of several Hertz in frequency. 

Therefore, the frequency of realistic random perturbations ranges from several to 

hundreds of events per second (Hz), and it seems that an appropriate amplitude may be 

up to +50% of the baseline. As was shown in the Methods Section, we model the noise by 

imposing a sequence of discrete Gaussian random numbers on the rate of dopamine flux. 

To evaluate the impact of this noise on signaling, we assume again, for illustration 

purposes, a threshold of 185% of the DA-e concentration level in comparison to the 

baseline (see Fig. 5) and record a response as effective if the actual DA-e level surpasses 

this threshold.  

 As an example, we use the dopamine model again under a train of 10 signals 

characterized by w1=0.01s, w2=0.2s and bolus=20. When the signaling system is not 
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subjected to noise, it always yields nine effective responses. The first response does not 

reach the threshold and is therefore not deemed effective. This “omission” may serve in 

the system as a filter that effectively ignores spurious firing. If the system is corrupted by 

noise, signal responses may be amplified or diminished, or they may merge with one 

another, resulting in a suboptimal number of effective responses. As indicated by the 

results in Figures 6 and 7, noise may have the following effects: 

 

1. Not surprisingly, for a fixed noise frequency, noise with larger amplitude imposes 

more serious distortions on signal transduction than small amplitude noise. 

Specifically, it results in a significantly reduced number of effective responses. 

2. For fixed amplitude, decreased noise frequency of the type tested here leads to 

reductions in effective responses.  

3. In the absence of a signal, noise alone does not significantly change the system 

dynamics for wide ranges of frequencies and amplitudes (Figure 7). 

 

These results indicate that the signaling system is very robust to noise of high frequency, 

such as 100 Hz, while it is much more vulnerable to perturbations with frequencies lower 

than 10Hz.  
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Figure 4.6 Statistics of effective responses in dopamine signaling systems subjected to noise of various 

amplitudes and frequencies.  

Bar color represents noise frequency. The statistics for each bar was calculated from 20 simulation samples.  
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Figure 4.7 Signaling dynamics of dopamine systems subjected to noise. 

Noise frequencies are 100Hz, 40Hz and 10Hz in rows 1, 2, and 3, respectively. Left column: w1=0.01s; 

w2=0.01s; right column: w1=0.01s; w2=0.2s. The lowest sub-panel for each example shows a train of 10 

signals; the center sub-panel visualizes the discrete Gaussian noise applied to the system, while the upper 

sub-panel shows the system response (DA-e level) to the signal train. Black lines in upper sub-panels show 

results for the unperturbed system, while red lines show results for systems exposed to noise. Unit for x-

axes: seconds (s); units for y-axes, from bottom to top: signal strength; percentage of noise to baseline; DA-

e ratio to baseline.  

 

3.3 Combined effects of delays and noise 

The discussions in the previous sections have demonstrated that both noise and delay, 

when separately in effect, have the tendency to distort signal transduction. These findings 

raise the question of whether the combination of delay and noise would make the 
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situation even worse. This answer is very difficult to obtain with intuition and hard 

thinking alone. Thus, we systematically investigated combined effects of various delays 

and noise using representative signals with w1=0.01s, w2=0.2s. As before, a response was 

counted as effective when the DA-e level surpassed the threshold of 185% of the 

baseline.  

 Figure 8 shows that the two effects may counteract each other and that, 

surprisingly, the signaling system is more effective in its responses when noise is 

accompanied by short delays. For instance, the influence of 100Hz noise is best reduced 

in a system with 0.05s delay, while 40 Hz and 20 Hz noise is well counteracted by a 0.1s 

delay. However, if the delay is very long, such as 0.2s, noise and delay exacerbate each 

other’s effects and lead to misfiring that appears to be quite unreliable.  

 

  
Figure 4.8 Combined effects of different delays and noise.  
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For short—but not for long—delays, the system is able to counteract high-frequency noise. 

 

 

4. Discussion  

 

Every signal transduction process starts with an initial stimulus that triggers one or more 

signaling cascades. The final component of the signaling cascade has a direct effect on 

gene expression or on the activation of relevant metabolic pathways. In the case of 

dopamine signaling, the initial stimulus is an action potential that is converted into a 

rapid influx of calcium into the presynaptic neuron. This influx triggers the release of 

dopamine into the synaptic cleft, binding to receptors on the postsynaptic membrane, and 

signal processing by the postsynaptic DARPP-32 protein, which ultimately leads to 

genomic, metabolic or neurophysiological responses.  Predicting the functioning of the 

dopamine signaling system is difficult, because many molecular components are involved 

and because dopamine itself is subject to biosynthesis, degradation, diffusion out of the 

synaptic cleft, and other processes that change over time and are adaptive in nature. For 

instance, dopamine may affect the proper functioning of dopamine receptors on the 

postsynaptic cell membrane. These receptors are normally stable, but exhibit greatly 

diminished receptor activity in response to sharp or prolonged increases in dopamine 

concentration. In cases of amphetamine and cocaine abuse, this type of down-regulation 

of dopamine receptors has been associated with a shortened attention span, further drug 

craving, and loss of interest in social activities even if they are otherwise considered 

pleasant.   

Biological and clinical experiments have shown that different behavioral stimuli 

can induce various patterns of dopamine release (e.g., (Grace 1991)). These patterns of 

neurotransmission can be simulated with mathematical models that demonstrate the 
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induction of different biochemical, cellular, and physiological effects (Qi et al., 

submitted). Computational models of this type have so far not accounted for stochastic 

noise, which must be expected to affect the dopamine signaling system on a regular basis. 

The consideration of noise is not trivial, because the system is highly nonlinear, contains 

a fair number of molecular components and in addition spans different time scales, which 

require the inclusion of time delays. The resulting hybrid nature of the system is 

notoriously difficult to implement and analyze.  

We have shown here that the combination of Biochemical Systems Theory (BST) 

with Hybrid Functional Petri Nets (HFPN) affords us with a powerful method for 

exploring ill-defined hybrid systems. BST requires only a minimum of assumptions for 

the representation of a biological system and offers strong guidance for default settings 

and for the selection of parameter values (Voit 2000). These features are crucial for 

designing models of a phenomenon like dopamine signaling that occurs deep within the 

mammalian or human brain, where precise measurements are very difficult to obtain. 

While BST does not per se allow delays and noise, BST models can be implemented with 

relative ease as HFPNs, which subsequently permit the seamless integration of 

deterministic methods of systems analysis with delays, switches, and stochastic effects 

(Wu and Voit 2009 a; Wu and Voit 2009 b).  

 Our HFPN simulations show that noise and delays can affect the signaling 

function of the dopamine system in a significant manner. For instance, in situations of 

low-frequency noise and large delays at the order of hundreds of milliseconds, the 

dopamine responses to signal trains may degrade into one abnormally long response, thus 

impairing the normal functioning of the dopamine signaling system. 

 While the simulations show that noise and delays can corrupt a true signal, our 

results also show that the signaling system is surprisingly robust. Most processes 

involved in the dopamine dynamics are fast events such as biochemical reactions and ion 

fluxes, which occur at the order of a few or tens of milliseconds, while the important 
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transport and release of dopamine into the cleft is somewhat slower. Much of the noise 

associated with small numbers of molecules contributing to the governing reactions can 

be expected to be at the order of maybe tens to one hundred Hertz. As demonstrated in 

the Results section, the dopamine signaling system can successfully tolerate noise of such 

frequencies even if the noise amplitude is large (the simulations allowed for noise 

corresponding to 50% of the baseline).  

 As a natural system in an ever-changing environment, the dopamine system will 

always be exposed to noise of various frequencies. There is not much that an organism 

can do to avoid these perturbations. Interestingly, the results of our combined noise-delay 

analysis show that unavoidable delays in the system, which are due to the relatively slow 

physical processes of vesicle dynamics and dopamine release, are not always detrimental 

and may even be advantageous, but only if they are short. Specifically, we found that 

small delays, at the order of 10 milliseconds, effectively remove the negative effects of 

fast noise, whereas much longer delays exaggerate the problems caused by noise, up to a 

point where the signal is no longer reliably transduced. Thus, the cell must assure that 

delays are not overly long. Indeed, it has been observed that vesicles filled with dopamine 

are primarily located close to the presynaptic membrane (Südhof 2004), thereby 

minimizing unavoidable delays, and that vesicles elsewhere in the presynapse primarily 

serve as back-up dopamine pools that move to the membrane when needed.  

 Like all mathematical models, the model proposed here is rather simplistic, and it 

remains to be seen whether the investigated delays and noise frequencies constitute the 

most relevant combinations. With the advent of in vivo imaging and measuring 

technologies (Gaffield, Rizzoli et al. 2006; Zhang, Li et al. 2009), the near future will 

reveal more biological details concerning noise and delays, and these will allow us to 

elucidate with greater accuracy the types and features of perturbations that the dopamine 

signaling system is facing on a daily basis.  
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 In spite of these uncertainties, the article demonstrates that the effects of 

combined noise and delays are not easy to predict and may even lead to counterintuitive 

outcomes. Secondly, the article shows that the embedding of a canonical formalism like 

BST in a hybrid framework like HFPN can substantially and beneficially expand the 

repertoire of analytical tools for systems biology. 
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Abstract 

Background 

Gillespie’s stochastic simulation algorithm (SSA) for chemical reactions admits three 

kinds of elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. All 

other types of reaction processes, for instance those containing non-integer kinetic orders 

or following other types of kinetic laws, are assumed to be convertible to one of the three 

elementary kinds, so that SSA can validly be applied. However, the conversion to 

elementary reactions is often difficult, if not impossible. Within deterministic contexts, a 

strategy of model reduction is often used. Such a reduction simplifies the actual system of 

reactions by merging or approximating intermediate steps and omitting reactants such as 

transient complexes. It would be valuable to adopt a similar reduction strategy to 

stochastic modelling. Indeed, efforts have been devoted to manipulating the chemical 

master equation (CME) in order to achieve a proper propensity function for a reduced 

stochastic system. However, manipulations of CME are almost always complicated, and 

successes have been limited to relative simple cases. 

Results 

We propose a rather general strategy for converting a deterministic process model into a 

corresponding stochastic model and characterize the mathematical connections between the 

two. The deterministic framework is assumed to be a generalized mass action system and the 

stochastic analogue is in the format of the chemical master equation. The analysis identifies 

situations: where a direct conversion is valid; where internal noise affecting the system 

needs to be taken into account; and where the propensity function must be 

mathematically adjusted. The conversion from deterministic to stochastic models is 

illustrated with several representative examples, including reversible reactions with 

feedback controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and 

stochastic focusing.  
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Conclusions 

The construction of a stochastic model for a biochemical network requires the utilization 

of information associated with an equation-based model. The conversion strategy 

proposed here guides a model design process that ensures a valid transition between 

deterministic and stochastic models.   

Background  

Most stochastic models of biochemical reactions are based on the fundamental 

assumption that no more than one reaction can occur at the exact same time. A 

consequence of this assumption is that only elementary chemical reactions can be 

converted directly into stochastic analogues (Gillespie 1977). These include: 1) zero-

order reactions, such as the generation of molecules at a constant rate; 2) first-order 

reactions, with examples including elemental chemical reactions as well as transport and 

decay processes; and 3) second-order reactions, which include heterogeneous and 

homogeneous bimolecular reactions (dimerization). Reactions with integer kinetic orders 

other than 0, 1 and 2 are to be treated as combinations of sequential elementary reactions.  

The advantage of the premise of non-simultaneous reaction steps is that the stochastic 

reaction rate can be calculated from a deterministic, equation-based model with some 

degree of rigor, even though the derivation is usually not based on first physical 

principles but instead depends on other assumptions and on macroscopic information, 

such as a fixed rate constant in the equation-based model. The severe disadvantage is that 

this rigorous treatment is not practical for modelling larger biochemical reaction systems. 

The reasons include the following.  First, in many cases, elementary reaction rates are not 

available. Secondly, even in the case that all reaction parameters are available, the 

computational expense is very significant when the system involves many species and 

reactions, and this fact ultimately leads to a combinatorial explosion of required 

computations. Within a deterministic modelling framework, the common practice in this 
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situation is to fit the transient and steady-state experimental data with a 

phenomenological, (differential) equation-based model, which explicitly or implicitly 

eliminates or merges some intermediate species and reactions. The best-known examples 

are probably Michaelis-Menten and Hill rate laws, which are ultimately explicit, but in 

truth approximate a multivariate system of underlying chemical processes.  

 

Similar model reduction efforts have been carried out for stochastic modelling. For 

instance, the use of a complex-order function (which corresponds to a reduced equation-

based model) was shown to be justified for some types of stochastic simulations. A 

prominent example is again the Michaelis-Menten rate law, which can be reduced from a 

system of elementary reactions to an explicit function by means of the quasi-steady-state 

assumption (see Result section and (Rao and Arkin 2003; Cao, Gillespie et al. 2005) ).  

However, model reduction within the stochastic framework has proven to be far more 

difficult than in the deterministic counterpart. The difficulties are mainly due to the fact 

that the reduction must be carried out on the chemical master equation (CME). This 

process is nontrivial and has succeeded only in simple cases. 

 

In general, the construction of a stochastic model for a large biochemical network 

requires the use of information available from an equation-based model. In the past, 

several strategies have been proposed for this purpose and within the context of 

Gillespie’s exact stochastic simulation algorithm (SSA; (Gillespie 1977)) and its variants 

(Gillespie 2007). For example, Tian and Burrage (Tian and Burrage 2006) proposed that 

a stochastic model could be directly formulated from the deterministic model through a 

Poisson leaping procedure. However, a rigorous mathematical justification for such a 

conversion is lacking. Typical moment-based approaches (Singh and Hespanha 2006; 

Gomez-Uribe and Verghese 2007; Lee, Kim et al. 2009) derive ODEs for the statistical 

moments of the stochastic model from an equation-based model where the 0th, 1st and 2nd 
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order reactions follow mass action rate laws. More recently the moment method was 

extended to cover models consisting of rational rate laws (Milner, Gillespie et al. 2011). 

Moreover, it was realized that the moment method is complementary to, but cannot fully 

replace, stochastic simulations, because it does not cover situations like genetic switches 

(Gomez-Uribe and Verghese 2007; Chevalier and El-Samad 2009).     

 

In this article, we explore the mathematical connection between deterministic and 

stochastic frameworks for the pertinent case of Generalized Mass Action (GMA) 

systems, which are frequently used in Biochemical Systems Theory (BST; (Savageau 

1969 a; Savageau 1976; Voit 2000)). Specifically, we address two questions: First, under 

what conditions can a deterministic, equation-based model be converted directly into a 

stochastic simulation model? And second, what is a proper way of implementing this 

conversion? We will develop a method to answer these questions and demonstrate it for 

functions in the canonical power-law format of.GMA systems. However, the results are 

applicable to other functions and formats as well, as we will demonstrate with several 

examples. 

 

1.1 Representations of systems of biochemical reactions 

Consider a well-stirred biochemical reaction system with constant volume and 

temperature, where sN  different chemical species { } 1
sN

s s
S

=
, interact through rN  

unidirectional reaction channels { } 1
rN

r r
R

=
.  Each reaction channel can be characterized as  

11 1 1: ,r
ss s s

k
r rNr rNr N NR v S v S v S v S+ + ⎯⎯→ + +… …  

 where rsv and rsv   are the counts of molecular species sS  consumed and produced due to 

reaction rR , respectively, and rk  is the rate constant.  The changed amount of sS  

rs rsrsv v v= − , which is due to the firing of reaction rR , defines the stoichiometric 
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coefficient of sS  in rR . The stoichiometric coefficients of all species can be summarized 

according to each reaction rR in the stoichiometric vector 

  

1

.s

s

r
N

r

rN

v

v

⎡ ⎤
⎢ ⎥

∈⎢ ⎥
⎢ ⎥⎣ ⎦

v � # Z  

 

The stoichiometric vectors of all reactions can further be arranged as the stoichiometric 

matrix of the system 

1, , .s r

r

N N
NV ×⎡ ⎤∈⎣ ⎦v v� … Z  

 

The size of the system is defined as AUΦ= , where A is the Avogadro number and U is 

the reaction volume.  

 

The modelling of biochemical reaction networks typically uses one of two conceptual 

frameworks: deterministic or stochastic.  In a deterministic framework, the state of the 

system is given by the a non-negative vector [ ] [ ]1( ) ( ) , , ( ) s

s

T N
Nt X t X t⎡ ⎤⎡ ⎤= ∈⎣ ⎦⎣ ⎦X … R ,  

where component [ ]( )sX t represents the concentration of species sS , measured in moles 

per unit volume. The temporal evolution of the state of the system is modelled by a set of 

ordinary differential equations, which in our case are assumed to follow a generalized 

mass action (GMA) kinetic law. By contrast, in a stochastic framework, the state of the 

systems is characterized by a vector 1( ) ( ), , ( ) s

s

T N
Nt x t x t⎡ ⎤= ∈⎣ ⎦x … Z , whose values are non-

negative integers. Specifically, [ ]( ) ( )s sx t X t= Φ  is the count of sS molecules, which is a 

sample value of the random variable ( )sX t . The system dynamics of this process is 



 129

typically described with the chemical master equation (CME). Both GMA and CME will 

be discussed in detail in the following sections.   

 

1.2 Motivation for the power-law formalism: reactions in crowded media 

Power-law functions with non-integer kinetics have proven very useful in biochemical 

systems analysis, and forty years of research have demonstrated their wide applicability 

(e.g., see  (Savageau 1969 a; Savageau 1976; Voit 2000)). Generically, this type of 

description of a biochemical reaction can be seen either as a Taylor approximation in 

logarithmic space or as a heuristic or phenomenological model that has been applied 

successfully hundreds of times and in different contexts, even though it is difficult or 

impossible in many situations to trace it back to first mechanistic principles. A 

particularly interesting line of support for the power-law format can be seen in the 

example of a bimolecular reaction occurring in a spatially restricted environment. 

Savageau demonstrated that the kinetics of such a reaction can be validly formulated as a 

generalization of the law of mass action, where non-integer kinetic orders are allowed 

(Savageau 1993; Savageau 1995). Neff and colleagues (Bajzer, Huzak et al. 2008; Neff 

2010; Neff, Offord et al. 2011) showed with careful experiments that this formulation is 

actually more accurate than alternative approaches.  

 

Within the conceptual framework of power-law representations, the rate of the 

association reaction between molecules of species 1S  and 2S  is given as 

[ ] [ ]1 2

1 2( ) ( )f fk X t X t . Here, k is the rate constant and 1f  and 2f  are real-valued kinetic 

orders, which are no longer necessarily positive integers as it is assumed in a mass action 

law. As an example, consider the reversible bimolecular reaction 1 2 3

f

b

k

k
S S S+ U . Like Neff 
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and colleagues (Neff 2010), we begin by formulating a discrete update function for the 

population of 3S  molecules as  

  [ ] [ ]( ) [ ]( )3 3 1 2 1 2 3 3( ) - ( ) ,   -  .x t t x t f X X t x x g X tx+ Δ = Δ Δ   (1)  

The first term on the right-hand side of this equation, [ ] [ ]( )1 2 1 2,  f X X t x xΔ , describes the 

production of 3S : it depends on the totality of possible collisions 1 2x x  and also on  some 

fraction [ ] [ ]( )1 2,f X X tΔ  
that actually reacts and forms the product. In a dilute 

environment, [ ] [ ]( )1 2,f X X  equals a traditional rate constant, and the reaction obeys the 

law of mass action, while in a spatially restricted environment, such as the cytoplasm, 

one needs to take crowding effects into account. As shown in Savageau (Savageau 1993; 

Savageau 1995), the desired fraction of a reaction in a crowded environment becomes a 

rate function that depends on the current concentrations of 1S  and 2S . The second term, 

[ ]( )3 3g X txΔ , describes the fraction [ ]( )3g X tΔ  of species 3S  that dissociates back 

into 1S  and 2S . This fraction may depend on some functional form of [ ]3X  because in a 

crowded environment the complex may not be able to dissociate effectively. Thus, rate 

constants in the generalized mass action setting become rate functions (cf.  (Neff 2010)). 

 

By taking the limit t 0Δ → , one obtains the differential equation  

  [ ] [ ]( ) [ ]( )3
1 2 1 2 3 3,  -  .dx f X X x x g X x

dt
=   (2)  

Savageau used Taylor series expansion to approximate the functions f and g in the 

logarithmic space [ ] [ ]( )1 2log , logX X  around some operating point ( ),a b . The result for 

f is 
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  [ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( )
[ ] [ ]

[ ] [ ]( )
[ ] [ ]

[ ] [ ]

1 2 1 2

1 2
1

1 ( , )

1 2
2

2 ( , )

1 2

log , log , log

,
( , ) (log )

,
(log ) HOT

+ log + log ,

a b

a b

f

f X X F X X

f X X
F a b X a

X

f X X
X b

X

k X Xα β

∂
= + −

∂

∂
+ − +

∂

≈

�

  (3)  

 where , , and fk α β are constants related to the chosen operating point (a, b). The final 

step is achieved by ignoring all higher order terms (HOT) beyond the constant and linear 

terms. Transformation back to the Cartesian space yields 

  [ ] [ ]( ) [ ] [ ]1 2 1 2, , .fk
a af X X k X X k eα β≈ =   (4)  

 

The same procedure leads to the power-law expression for the degradation term: 

[ ]( ) [ ]3 3dg X k X γ≈ . By combining constants we arrive at a power-law representation for 

the dynamics of species 3S  as  

  [ ] [ ] [ ] [ ][ ] [ ] [ ]

[ ] [ ] [ ]

3
1 2 1 2 3 3

1 2 3 ,

a d

a b c
a d

d X
k X X X X k X X

dt
k X X k X

α β γ= −

= −

  (5)  

where 1, 1,  and 1.a b cα β γ= + = + = + As long as , , ,f dk k a b and c remain more or less 

constant throughout a relevant range, the power-law model is mathematically well 

justified. In actual applications, the values of rate constants and kinetic orders can be 

estimated from experimental data (Chou and Voit 2009). When the functions f and g are 

originally not in power-law format, they can be locally approximated by power-law 

functions with a procedure similar to the one shown above (Equations (3) to (5)). An 

illustration will be given in the example section. 
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1.3 The Generalized Mass Action (GMA) format 

In the GMA format within Biochemical Systems Theory, each process is represented as 

univariate or multivariate power-law representation. GMA models may be developed de 

novo or as an approximation of some other nonlinear rate laws. GMA models 

characterize the time evolution of the system state given that the system was in the state 

0( )X t  at some initial time 0t . Generically, the state of the system is changed within a 

sufficiently small time interval by one out of the rN  possible reactions that can occur in 

the system. The reaction velocity through reaction channel rR is:  

  [ ] [ ]1

11

( ) '( ) '
( )

rss
s

s

fN
N

r s
sr rN

X tX t
k X t

v v =

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥= = =
⎢ ⎥⎣ ⎦

∏…   (6)  

for those 0, 1, ,rs rsrs sv v v s N= − ≠ = … . As shown in the example of a bimolecular 

reaction, the kinetic order rsf associated with species sS  captures the effects of both 

reactant properties (such as the stoichiometric coefficient rsv ) and environmental 

influences (such as temperature, pressure, molecular crowding effects, etc.). 

Therefore rsf does not necessary equal an integer rsv , which is assumed to be the case in 

mass action kinetics, but is possibly real-valued and may be negative. Summing up the 

contributions of all reactions, one obtains a GMA model describing the dynamics of sS  

as 

 
[ ] [ ]

1 1

( ) ( )
rssr

fNN

s rs r s
r s

d X t v k X t
dt = =

= ∑ ∏   (7)  

for every 1, , .ss N= …  Each reaction contributes either a production flux or a degradation 

flux to the dynamics of a certain species. Positive terms ( 0rsv > ) represent the production 

of sS , while negative terms ( 0rsv < )  describe degradation. If rsf  is positive, then sS  

accelerates the reaction rR ; a negative value represents that sS  inhibits the reaction, and 



 133

rsf =0 implies that sS  has no influence on the reaction. The rate constant rk  for reaction 

rR , is either positive or zero. Both, the rate constant and the kinetic order, are to be 

estimated from data.  

 

1.4 Proper use of equation-based functions for stochastic simulations    

The fundamental concept of a stochastic simulation is the propensity function ( )α X , and 

( )dtα X  describes the probability that a reaction will change the value of a system 

variable within the next (infinitesimal) time interval ( , )t t dt+ . While a formal definition 

will be given later (Equation 18), it is easy to intuit that the propensity function is in some 

sense analogous to the rate in the corresponding deterministic model. In fact, the 

propensity function is traditionally assumed to be ( )( ) sfα =X X , if the deterministic 

model is ' ( , ), 1, ,s s sX f t s N= =X … . However, a proper justification for this common 

practice is by and large missing. Indeed, we will show that the direct use of a rate 

function as the propensity function in a stochastic simulation algorithm requires that at 

least one of the following assumptions be true: 

1) f is a linear function; 

2) the reaction is monomolecular; 

3) all iX  in the system are noise-free variables, i.e., without (or with ignorable) 

fluctuations, which implies that the covariance of any two participating reactants 

is zero (or close to zero).  

Each of these assumptions constitutes a sufficient condition for the direct use of a rate 

function as the propensity function and applies, in principle, to GMA as well as other 

systems. The validity of these conditions will be discussed later. Specifically, the first 

condition will be addressed in the Results section under the titles “0th-order reaction 
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kinetics” and “1st-order reaction kinetics,” while the second condition will be discussed 

under the title “Real-valued order monomolecular reaction kinetics.” The third condition 

will be the focus of Equations (29-36) and their associated explanations. 

In reality, the rates of reactions in biochemical systems are commonly nonlinear 

functions of the reactant species, and fluctuations within each species are not necessarily 

ignorable. Therefore, to the valid use of an equation-based model in a stochastic 

simulation mandates that we know how to define a proper propensity function. The 

following section addresses this issue. It uses statistical techniques to characterize 

estimates for both the mean and variance of the propensity function, and these features 

will allow an assessment of the validity of the assumption ( )( ) sfα =X X  and prescribe 

adjustments if the assumption is not valid. 

Methods 

 

2.1. Deriving the mean and variance of a power-law function of random variables 

Consider a generic power-law function of random variables sX  with the format 

1

 ( )
sN

fs
s

s=

PL k X= ∏X  . Estimates of its mean PLμ and variance PLσ  are given as 

 

 

1

exp cov log , log
s sN N

fs
PL s i j i j

i js=

k f f X Xμ μ
<

⎛ ⎞
⎡ ⎤≈ ⎜ ⎟⎣ ⎦

⎝ ⎠
∑∏  (8)  

 2 2
PL PLσ μ≈ Ω  (9)  

(for details, see Additional file 1). Here,  
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 2 2

1
2 cov log ,log

s sN N

s s s i j i j
s= i j

f f f X Xμ σ−

<

⎡ ⎤Ω = + ⎣ ⎦∑ ∑  (10)  

and [ ]=Es sXμ  and 2 2E ( )s s sXσ μ⎡ ⎤= −⎣ ⎦  
are the mean and variance of random variable 

sX , respectively. If we choose to express cov log , logi jX X⎡ ⎤⎣ ⎦ as a function of sμ , 2
sσ  

and covariance cov ,ij i jX Xσ ⎡ ⎤= ⎣ ⎦ , using a Taylor  approximation, we obtain 

 
2 2

11

1 1exp
2 2

s sN N
fs

PL s s s s
s=s=

k fμ μ σ μ
⎛ ⎞

≈ − + Ω⎜ ⎟
⎝ ⎠

∑∏  (11) 

 2 2 ,PL PLσ μ≈ Ω  (12) 

where 
( ) ( )

( ) ( ) ( )

22

1

22 2

12 { ( ) log( )
2

1 1log( ) }.
2 4

s sN N

s s s i j ij i j i j j
s= i j

j i i i i j j

f f fσ μ σ μ μ μ σ μ

μ σ μ σ μ σ μ

<

Ω ≈ + +

+ −

∑ ∑
 (13) 

 

Since many biochemical variables approximately follow a log-normal distribution (Koch 

1966; Walton, Preston et al. 1977; Limpert, Stahel et al. 2001), it is valuable to consider 

the special situation where ( )1, , sX X… is log-normally distributed (i.e., ( )1log , , log sX X…  

is normally distributed). In such a case, a simpler alternative way to calculate 

cov log , logi jX X⎡ ⎤⎣ ⎦ is 

 
cov log , log log 1 .ij

i j
i j

X X
σ
μ μ

⎛ ⎞
⎡ ⎤ = +⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 (14)  

 

(Law and Kelton 2000). By substituting this result into (8)-(10), one obtains 
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1

1
i j

s s
f f

N N
f ijs

PL s
s= i j i j

k
σ

μ μ
μ μ<

⎛ ⎞
≈ +⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏  (15)  

 2 2 ,PL PLσ μ≈ Ω  (16)  

where 2

1
2 log 1 .

s sN N
ijs

s i j
s= i js i j

f f f
σσ

μ μ μ<

⎛ ⎞⎛ ⎞
Ω = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑  (17)  

 

The approximation formulae for PLμ  and 2
PLσ  in eqns. (8)-(10) provide an easy 

numerical implementation if observation data are available to estimate 

cov log , logi jX X⎡ ⎤⎣ ⎦ . Furthermore, Equations (11)-(13) demonstrate how PLμ  and 2
PLσ  

are related to 2, s sμ σ and ijσ ; however, the price of this insight is paid by the possible 

inaccuracy introduced through the Taylor approximation. Equations (15)-(17) also 

provide a functional dependence of PLμ  and 2
PLσ on 2( , , )s s ijμ σ σ , but it is only valid if 

the additional assumption of log-normality is acceptable.  

2.2 Deriving proper propensity functions for stochastic simulations from 

differential equation-based models 

Assuming that the GMA model faithfully captures the average behaviour of a 

biochemical reaction system and recalling [ ] ( )1( ) [ ( )], ,[ ( )]
s

T

Nt X t X t=X … , the expected 

metabolite numbers are defined as the expectation  

 [ ] [ ] ,E = ΦX X  (18)  

 

where Φ  is the system size as defined above. 
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To describe the reaction channel rR stochastically, one needs the state update vector rv  

and must characterize the quantity of molecules flowing through of reaction channel rR  

during a small time interval. The key concept of this type of description is the propensity 

function ( )rα x , which is defined as 

( ) the probability that exactly one reaction will occur somewhere inside 
 within infinitesmal interval ( , ),given current state ( ) .

r rdt R
U t t dt t
α =

+ =
x

X x
 

(19)

 

(Gillespie 1977). Because of the probabilistic nature of the propensity function, X(t) is no 

longer deterministic, and the result is instead stochastic and based on the transition 

probability 

 0 0 0 0( , | , ) Prob{ ( ) ,  given ( ) },P t t t t= = =x x X x X x  (20)  

which follows the chemical master equation (CME) 

 
[ ]0 0

0 0 0 0
1

( , | , ) ( ) ( , | , ) ( ) ( , | , ) .
rN

r r r r
r

P t t P t t P t t
t

α α
=

∂
= + + −

∂ ∑x x x v x v x x x x  (21)  

Updating CME requires knowledge of every possible combination of all species counts 

within the population, which immediately implies that it can be solved analytically for 

only a few very simple systems and that numerical solutions are usually prohibitively 

expensive (Gillespie and Petzold 2006). To address the inherent intractability of CME, 

Gillespie developed an algorithm, called the Stochastic Simulation Algorithm (SSA), to 

simulate CME models (Gillespie 1977). SSA is an exact procedure for numerically 

simulating the time evolution of a well-stirred reaction system. It is rigorously based on 

the same microphysical premise that underlies CME and gives a more realistic 

representation of a system’s evolution than a deterministic reaction rate equation 

represented by ODEs. SSA requires knowledge of the propensity function, which 
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however is truly available only for elementary reactions. These reactions include: 1) 0th 

order reactions, exemplified with the generation of a molecule at a constant rate; 2) 1st 

order monomolecular reactions, such as an elemental chemical conversion or decay of a 

single molecule; 3) 2nd order bimolecular reactions, including reactive collisions between 

two molecules of the same or different species. The reactive collision of more than two 

molecules at exactly the same time is considered highly unlikely and modelled as two or 

more sequential bimolecular reactions.  

 

For elementary reactions, the propensity function of reaction rR  is computed as the 

product of a stochastic rate constant cr and the number hr of distinct combinations of 

reactant molecules, i.e.  

 ( ) ( ), 1, , .r r r rc h r Nα = =x x …  (22)  

Here 
1

1

1

,  for 0
( )

!

0, otherwise

s
rs

s

s

N
v

N s
s s

rssN
s rsr

rs
s

xx
x v

h v
v

=

=

=

⎧
⎪ ⎛ ⎞⎪ ≈ ≥ >⎪ ⎜ ⎟= ⎨ ⎝ ⎠
⎪
⎪
⎪⎩

∏
∏

∏x , where sx is the sample value of random 

variable sX . The approximation is invoked when sx is large and 

( 1), , ( 1)rss sx x v− − +… are approximately equal to sx . 

 

In Gillespie’s original formulation (Gillespie 1977) cr is a constant that only depends on 

the physical properties of the reactant molecules and the temperature of the system, and 

crdt is the probability that a particular combination of reactant molecules will react within 

the next infinitesimally small time interval ( , )t t dt+ . The constant cr can be calculated 

from the corresponding deterministic rate constants, if they are known. 
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Since the assumption of mass action kinetics is not valid generally, especially in spatially 

restricted environments and in situations dominated by macromolecular crowding, we 

address the broader scenario where cr is not a constant but a function of the reactant 

concentrations. Thus, we denote cr as a stochastic rate function, while retaining the 

definition of hr as above. Knowing that any positive-valued differentiable function can be 

approximated locally by a power-law function, we assume the functional form of the 

stochastic rate function as 

 

1

( ) ( ) .
s

rs

N

r r s
s

c x t εκ
=

= ∏x  (23)  

Here, rκ  and rsε  are constants that will be specified in the next section, and 1, , .rr N= …  

Note that rsε  are now real-valued. Once the stochastic rate function is determined (see 

below), the propensity function can be calculated as 

 

1

1

( ) ( ) ( ) .
!

s
rsrs

s

N
vr

r r r sN
s

rs
s

c h x
v

εκα +

=

=

= = ∏
∏

x x x  
(24)  

 

In order to identify the functional expression for a stochastic rate function, and thus the 

propensity function, we consider the connection between the stochastic and the 

deterministic equation models. By multiplying CME with x and summing over all x, we 

obtain 

 
[ ] [ ]

1
( ) ( ( )) .

rN

r r
r

d E t E t
dt

α
=

=∑X v X  (25)  

Similarly, the expectation for any species Xs(t) is given as 

 
[ ] [ ]

1
( ) ( ( )) , 1, , .

rN

s rs r s
r

d E X t v E t s N
dt

α
=

= =∑ X …  (26)  

The details of these derivations are shown in Additional file 1. 
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We can use these results directly to compute the propensity function for a stochastic 

GMA model, assuming that its deterministic counterpart is well defined. Specifically, we 

start with the deterministic GMA equation for sX , 

 
[ ] '

'
1 ' 1

( ) [ ( )] , 1, , ,
sr

rs

NN
f

s rs r s s
r s

d X t v k X t s N
dt = =

= =∑ ∏ …  (27)  

where ,rs rv k and 'rsf are again the stoichiometric coefficients, rate constants, and kinetic 

orders, respectively. By substituting [ ] [ ]s
s

E X
X =

Φ
 from Equation (18) into this GMA 

model, we obtain a “particle-based” equation of the format 

  [ ] [ ] '

'

1 ' 1

, 1, ,
rs

sr
fNN

s s
rs r s

r s

E X E Xd v k s N
dt = =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟Φ Φ⎝ ⎠ ⎝ ⎠
∑ ∏ … .  

Elementary operations allow us to rewrite this equation as 

 
[ ]( ) '1

'
1 ' 1

[ ] , 1, , ,
sr

rs

NN
F fr

s rs r s s
r s

d E X v k E X s N
dt

−

= =

= Φ =∑ ∏ …  (28)  

where '
' 1

.
sN

r rs
s =

F = f∑  In this formulation, the differential operator is justified only when 

large numbers of molecules are involved. The assumption that the deterministic equations 

precisely capture the average behaviour of the biochemical reaction system directly 

equates the stochastic CME (25) to the deterministic equation based model (28) 

 
[ ] '1

'
' 1

( ( )) [ ] .
s

rs

N
F fr

r r s
s

E t k E Xα −

=

= Φ ∏X  (29)  

 

Now we have two choices for approximating the expectation of the propensity function 

on left-hand side of equation (29):  
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1) adopt a zero-covariance assumption as was done in (Wolkenhauer, Ullah et al. 

2004), which implies ignoring random fluctuations within every species as well as 

their correlations. This assumption is only justified for some special cases such as 

monomolecular and bimolecular reactions under the thermodynamic limit (cf. 

(Gillespie 2007; Gomez-Uribe and Verghese 2007)), but is not necessary valid in 

generality. Here the thermodynamic limit is defined as a finite concentration limit 

which the system reaches when both population and volume approach infinity. 

Under this assumption, the left hand side of (29) becomes  

 

[ ] [ ]
1 1

1 1

( )
! !

s s
rsrsrsrs

s s

N N
vvr r

r s sN N
s s

rs rs
s s

E E x E X
v v

εεκ κα ++

= =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

∏ ∏
∏ ∏

x  (30)  

for every 1, , ,rr N= … and Equation (24) yields  

1

1

!
s

rsrs rs
N

Fr
rsr r

s

f v

k v

ε

κ −

=

= −

= Φ ∏
 

 1

1

( ) !
s

rs

N
Fr

rsr r s
s

c k v x ε−

=

= Φ ∏x  (31)  

 and  

 

Here, the index r_0 is used to distinguish this 0-covariance propensity function from a 

second type of propensity in the next section.  

With the zero-covariance assumption, one can substitute (32) back into the equation for 

the expectation for each species, which yields  

 1
_ 0

1

( ) .
s

rs

N
F fr

r r s
s

k xα −

=

= Φ ∏x  (32)  
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[ ] 1

1 1

( )
sr

rs

NN
F fs

s rs r s
r s

d E X t v k
dt

μ−

= =

= Φ∑ ∏  (33)  

for every 1, , .ss N= … . Note that this result is exactly equivalent to the equation-based 

model (27). 

 

Equation (33) is based on assumption that both the fluctuations within species and their 

correlations are ignorable, which is not necessarily true in reality. If one uses it in 

simulations where the assumptions are not satisfied, it is possible that the means for the 

molecular species are significantly different from the corresponding equation-based 

model values. This discrepancy arises because the evolution of each species in the 

stochastic simulation is in truth affected by the covariance which is not necessarily zero, 

as it was assumed. This phenomenon was observed by Paulsson and collaborators 

(Paulsson, Berg et al. 2000) and further discussed in different moment-based approaches 

(Gomez-Uribe and Verghese 2007; Lee, Kim et al. 2009). To assess the applicability 

limit of the propensity defined by (32), we can apply approximation techniques as shown 

in eqns. (8)-(10) on the functional expression of _ 0rα  and obtain mean and variance as 

[ ]
'

_ 0

1
_ 0 '

' 1

( ( )) exp cov log , log
rss s

r

fN N
Fr

r r s ri rj i j
i js

E t k E X f f X Xαμ α −

<=

⎛ ⎞
⎡ ⎤ ⎡ ⎤= ≈ Φ ⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑∏X  (34)

_ 0 _ 0

2 2 ,
r r rα ασ μ≈ Ω  (35)

where 

 2 2

1

2 cov log , log ,
s sN N

r rs s s ri rj i j
s= i j

f f f X Xμ σ−

<

⎡ ⎤Ω = + ⎣ ⎦∑ ∑  (36)  

 



 143

for every 1, , .ss N= …  These expressions demonstrate that even with large numbers of 

molecules the mean of CME does not always converge to the GMA model. Indeed, the 

convergence is only guaranteed in one of the following special situations: 1) the reaction 

is of 0th order; 2) the reaction is a real value-order monomolecular reaction, with 1st order 

reaction as a special case; 3) the covariance contribution in (34) is sufficiently small to be 

ignored for all participating reactant species of a particular reaction channel. Except for 

these three special situations, the covariance as shown in (34) significantly affects the 

mean dynamics. Therefore, stochastic simulations using zero-covariance propensity 

functions will in general yield means different from what the deterministic GMA model 

produces. How large these differences are cannot be said in generality. Under the 

assumption that the GMA model correctly captures the mean dynamics of every species, 

this conclusion means that _ 0rα  is not necessarily an accurate propensity function for 

stochastic simulations, and the direct conversion of the equation-based model into a 

propensity function must be considered with caution. 

Moreover, there is no theoretical basis to assume that there are no fluctuations in the 

molecular species or that these are independent. Therefore, we need to consider the 

second treatment of the expectation of the propensity function and study the possible 

effects of a non-zero covariance.   

 

2) We again assume that the GMA model is well defined, which implies that 

information regarding the species correlations and fluctuations has been captured 

in the parameters of the GMA model on the left hand size of Equations (7) and 

(28).  To gain information regarding correlations, we use Taylor expansion to 

approximate the propensity function (see Additional file 1 for details): 



 144

[ ]

[ ] ( )( )

1

1

1

1

( ( ))
!

exp cov log , log .
!

s
rsrs

s

s s
rsrs

s

N
vr

r sN
s

rs
s

N N
vr

ri rjs ri rj i jN
i js

rs
s

E t E X
v

E X v v X X
v

ε

ε

κα

κ ε ε

+

=

=

+

<=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎛ ⎞
⎡ ⎤≈ + +⎜ ⎟⎣ ⎦

⎝ ⎠

∏
∏

∑∏
∏

X

 (37)

After substitution of (37) in (29), one obtains 

1

1

!exp cov log , log

.

s sN N
Fr

rsr r ri rj i j
i js

rsrs rs

k v f f X X

f v

κ

ε

−

<=

⎛ ⎞
⎡ ⎤= Φ −⎜ ⎟⎣ ⎦

⎝ ⎠
= −

∑∏  

Given the state x of the system at time t, the stochastic rate function of reaction rR   is  

 

1

1

1 1

( )

!exp cov log ( ), log ( ) .

s
rs

s ss
rs rs

N

r r s
s

N NN
F f vr

rsr ri rj i j s
i js s

c x

k v f f X t X t x

εκ
=

− −

<= =

=

⎛ ⎞
⎡ ⎤= Φ −⎜ ⎟⎣ ⎦

⎝ ⎠

∏

∑∏ ∏

x

(38) 

 

Here it is important to understand that although the random variables { }s s S
X

∈  appear in 

the expression ( )rc x , ( )rc x is not a function of random variables but a deterministic 

function. The reason is that the cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  in the composition of ( )rc x , 

which as the numerical characteristic of the random variables { }s s S
X

∈
, is deterministic. 

Therefore, the stochastic rate function ( )rc x  is a well-justified deterministic function that 

is affected by both the state of the system 1[ , , ]
sNx x… and cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦ , the 

numerical characteristic of fluctuations in the random variables { }s s S
X

∈
.  

 

Given the expression ( )rc x , the propensity function is 
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1 1

1

1

1
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( ) ( ) ( )

!exp cov log ( ), log ( )

!

exp cov log ( ), log ( ) .

s ss
rs rs
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s

s s
rs

r r r

N NN
F f vr

rsr ri rj i j s N
i js s

N
s

rs
s

N N
F fr

r s ri rj i j
i js

c h

k v f f X t X t x

v

k x f f X t X t

α

− −

<= =

=

=

−

<=

=

⎛ ⎞
⎡ ⎤Φ −⎜ ⎟⎣ ⎦

⎝ ⎠=

⎛ ⎞
⎡ ⎤= Φ −⎜ ⎟⎣ ⎦

⎝ ⎠

∑∏ ∏
∏

∏

∑∏

x x x

 

(39)  

 

These results are based on the assumption that there are large numbers of molecules for 

all reactant species participating in reaction rR . For simplicity of discussion, we define 

the propensity adjustment factor (paf) of reaction rR  as 

 
( ) exp cov log ( ), log ( ) .

sN

ri rj i j
i j

paf t f f X t X t
<

⎛ ⎞
⎡ ⎤−⎜ ⎟⎣ ⎦

⎝ ⎠
∑�  (40)  

 

paf is a function of time t and represents the contribution of the reactants to correlations 

among species in the calculation of the propensity function for reaction rR . We denote the 

propensity function in (39), which accounts for the contribution of the covariance, as 

_ covrα , in order to distinguish it from the propensity function _ 0rα  (32), which is based 

on the assumption of zero-covariance, i.e., 

 1
_ cov

1

( ) ( ) .
s

rs

N
F fr

r r s
s

paf t k xα −

=

= Φ ∏x  (41)  

 

Remembering that cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦ , which is a component in both the stochastic 

rate function ( )rc x  and now in the function paf(t), is a deterministic function rather than a 

function of random variables, paf(t) is a deterministic correction to the kinetic constant 
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rk  in the construction of  _ covrα  in (41), which corrects the stochastic simulation toward 

the correct average.  

 

In contrast to the propensity function _ 0rα , _ covrα  leads to accurate stochastic 

simulations.  To illustrate this difference, we analyze [ ]( )s
d E X t
dt

 as follows: We apply 

the approximation techniques in eqns. (9)-(11) in order to obtain the mean and variance 

of the propensity function _ covrα : 

 
[ ]

'

_ cov

1
_ cov '

' 1

( ( ))
rss

r

fN
Fr

r r s
s

E t k E Xαμ α −

=

⎡ ⎤= ≈ Φ⎣ ⎦ ∏X  (42)  

 
_ cov _ cov

2 2 .
r r rα ασ μ≈ Ω  (43)  

Here 

 2 2

1

2 cov log , log .
s sN N

r rs s s ri rj i j
s= i j

f f f X Xμ σ−

<

⎡ ⎤Ω = + ⎣ ⎦∑ ∑  (44)  

 

By substituting (42) back into the derivation of CME (26), one obtains  

 [ ]

'

_ cov
1

1
'

1 ' 1

( )

( ( ))
r

sr
rs

s

N

rs r
r

NN
F fr

rs r s
r s

d E X t
dt

v E t

v k

α

μ

=

−

= =

⎡ ⎤= ⎣ ⎦

≈ Φ

∑

∑ ∏

X  (45)  

for every 1, , ,ss N= … which is equivalent in approximation to the GMA model (28). In 

the other words, the mean of every molecular species obtained by using _ covrα  in the 
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CME derived equation (27) is approximately identical to the corresponding macroscopic 

variable in the GMA model.  

 

1.3 Calculation of cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  

When data in the form of multiple time series for all the reactants are available, it is 

possible to compute  cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  directly from these data. Once this 

covariance is known, the function paf, _ covrα  and the mean dynamics can all be assessed. 

Alas, the availability of several time series data for all reactants under comparable 

conditions is rare, so that cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  
must be estimated in a different 

manner.  

 

If one can validly assume that the covariance based on _ 0rα  does not differ significantly 

from the covariance based on _ covrα , one may calculate cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  by one of 

following methods. 

 

Method 1:  

One uses _ 0rα to generate multiple sets of time series data of all reactants and then 

computes cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦ .  

 

Method 2:  
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First, cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  is expressed as a function of mean and covariance in one of 

the following ways; either as 

 ( )

( ) ( ) ( )

2

22 2

1cov log , log ( ) log( )
2

1 1log( )
2 4

i j ij i j i j j

j i i i i j j

X X σ μ μ μ σ μ

μ σ μ σ μ σ μ

⎡ ⎤ ≈ +⎣ ⎦

+ −
 (46)  

or as Equation (14): 

cov log , log log 1 .ij
i j

i j

X X
σ
μ μ

⎛ ⎞
⎡ ⎤ = +⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 

The first functional expression of cov log ( ), log ( )i jX t X t⎡ ⎤⎣ ⎦  
is achieved by Taylor 

approximation, whereas the second expression is obtained by the additional assumption 

that the concentrations ( )1, , sX X… are log-normally distributed (Law and Kelton 2000; 

Singh and Hespanha 2006). The consideration of a log-normal distribution is often 

justified by the fact that many biochemical data have indeed been observed to be log-

normally distributed (e.g., (Koch 1966; Walton, Preston et al. 1977; Limpert, Stahel et al. 

2001)). 

 

Second, one uses _ 0rα  to approximate the mean and covariance either by direct 

simulation, as shown in method 1, or by a moment-based approach, which is explained in 

Additional file 2, and which yields the differential equations 
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2
_ 0

, _ 0
1 , 1

2
_ 0 _ 0 _ 0

, , , , _ 0
1 1 1 , 1

( )1( )
2

( ) ( ) ( )1( ) .
2

sr

s s sr

NN
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r s r mn
r m n m n

N N NN
ij r r r

r i js r j is r i r j r mn
r s s m ns s m n
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t X X
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t X X X X

αμ α σ

σ α α α
σ σ α σ

= =

= = = =

⎧ ⎫∂∂ ⎪ ⎪≈ +⎨ ⎬∂ ∂ ∂⎪ ⎪⎩ ⎭
⎧ ⎫⎡ ⎤∂ ∂ ∂ ∂⎪ ⎪≈ + + +⎢ ⎥⎨ ⎬∂ ∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ ∑

∑ ∑ ∑ ∑

μ
μ

μ μ μ
μ

 

For convenience of computational implementation, the above equations can be written in 

matrix format 

( )( ) ( )

1 "
2

' ' .

T

T T

V
t

V V V V
t

μ α α σ

σ σ α σ α

∂ ⎛ ⎞≈ +⎜ ⎟∂ ⎝ ⎠
∂

≈ + + Λ
∂

:

 

( ) ( ) ( )

( ) ( )

( )

1 1

2 2

1
, 1

1 1
1

Here for  1, , , and , , 1, , , , , , , , , ,

( ) ( )" ", , " , '' , '' | ,

( ) ('' " , , " , ' ( ', , '), ' , ,

s r

s

r

r r

T T

r s N rs Nrs

NT r r
N r r mnmn

m nm n m n

T r r
N N r

r N s m n N V v

X X X X

X

μ μ μ α α α

α αα α α α α σ σ

α αα σ α σ α σ α α α α

=
=

= = = = =

∂ ∂
= = =

∂ ∂ ∂ ∂

∂ ∂
= =

∂

∑ X μ
X X

μ μ

… … … …

… :

: � : … : … …

( )
2

, 1

) ,

( )1and  is a diagonal matrix with ( ) .
2

s

s

T

N

N
r

r mnrr
m n m n

X

X X
αα σ

=

⎛ ⎞
⎜ ⎟⎜ ⎟∂⎝ ⎠

∂
Λ Λ = +

∂ ∂∑ μμ
 

1.4 Statistic criteria for propensity adjustment 

Assuming that an equation-based model captures the average behaviour and one intend to 

find propensity function for stochastic simulation that will reproduce that means.  One 

can use the 95% confidence interval to evaluate the need of propensity adjustment. 

Specifically, for stable systems that will reach a steady state, if the steady state of the 

ODEs stx is within the 95% confidence interval n runs of stochastic simulations, i.e.  
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1.96 , 1.96st st
st st stx

n n
δ δμ μ⎡ ⎤

∈ − +⎢ ⎥
⎣ ⎦

, then the rate function in the equation-based model 

can be used as the propensity without adjustment; otherwise propensity adjustment is 

needed.  Here stμ and stδ  can be attained from either moment-base method or n 

independent runs of stochastic simulation using propensity without adjustment. An 

example can be found at the result section: reversible reaction with feedback controls. 

 

For other systems that do not reach steady state but certain features of transient behavior 

are of the highest interest,  one can judge the need of propensity adjustment by whether 

the features of the equation-based model lay within the 95% confidence interval of the 

corresponding characteristic given by moment-base prediction or n runs of stochastic 

simulations.  The repressilator example in the result section will be a demonstration.  

 

3.Results  

 

3.1. Generic special cases 

It is generally not valid to translate a rate from a deterministic biochemical model into a 

propensity function of the corresponding stochastic simulation without adjustment (see 

Equations. (34)-(36)). However, in some situations, the propensity adjustment (e.g., 

Equations (40)-(44)) is not needed, and in some other cases it becomes relatively simple. 

 

1) 0th-order reaction kinetics 

Consider a very simple equation-based model of the type  
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 [ ] [ ]( ) ( )
 or ,s s

r r

d X t dE X t
k k

dt dt
= = Φ  (47)  

 

for all 1, , ss N= … , 0rsf = . According to Equations (40)-(44), one obtains 

( )( ) [ ] [ ]( )

2

_cov _0

0

0

exp log  i.e.   ( )

.

r

r

r

r r r r

r r r

k k E E

k

α

α

σ

μ α α

α α

Ω =

≈

≈ Φ = Φ ≈

≈ Φ =

X X
 

Thus, for a 0th-order reaction, its rate equation can be taken directly as the propensity 

function in stochastic simulations. 

 

2)  1st-order reaction kinetics 

Direct application of Eqs. (40)-(44) yields 

 [ ] [ ]( ) ( )
( )  or ( ) ,i i

r j r j

d X t dE X t
k X t k E X t

dt dt
⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦  (48)  

rs sjf δ= , , 1, , si j N= … . Therefore, according to Equations (40)-(44) 

( )
( ) ( )

( )( ) [ ] [ ]( )

2

2 2

_ cov _ 0

exp log  i.e. ( )

( ) ( ).

r r

r

r j j

j j

r j r j r r

r r j r

k k E E

k X

α α

α

σ μ

σ μ σ μ

μ μ μ α α

α α

Ω =

=

≈ = ≈

≈ =

X X

X X

 

Thus, for 1st-order reactions, the rate equation can again be taken directly as the 

propensity function in stochastic simulations. 

 

3) Real-valued order monomolecular reaction kinetics 

Consider a reaction with kinetics of the type 
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 [ ] [ ] 1( ) ( )
( )  or ( ) ,rj rjrj

f ffi i
r j r j

d X t dE X t
k X t k E X t

dt dt
−⎡ ⎤ ⎡ ⎤= = Φ⎣ ⎦ ⎣ ⎦  (49)  

0, 0rj rsf f≠ = , for any , 1, , .ss j s N≠ = …   Equations (40)-(44) lead to 
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( ) ( )

[ ] [ ]( )
( ) ( )

2

2 2

1

1
_ cov _ 0

 i.e. ( )

.

r r

rj rj

r

rj rj

r j j
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f f
r j r r

f f
r r j r

k E E

k X

α α

α

σ μ

σ μ σ μ

μ μ α α

α α

−

−

Ω =

=

≈ Φ ≈

≈ Φ =

X X

X X

 

Thus, for reaction kinetics involving a single variable and a real-valued order, the rate 

equation can again be taken as the propensity function in stochastic simulations. 

 

4) 2nd-order reaction kinetics 

This type of reaction can be expressed as 

 
[ ] [ ] [ ] [ ]1( )

( ) ( ) ( )  or ( ) ( ) ,s
s r i j r i j

dE X td X t k X t X t k E X t E X t
dt dt

−⎡ ⎤ ⎡ ⎤= = Φ⎣ ⎦ ⎣ ⎦ (50) 

{ }, 1, , , , 1,  and  0,  for all , .s ri rj rsi j N i j f f f s i j∈ ≠ = = = ≠… Therefore, according to 

Equations (40)-(44) 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

22

2 2

2 22 2

2 22

1

1
_ cov

2cov log , log

2{cov ,

1 1 1log( ) log( ) }
2 2 4

2cov log , log
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( ) exp cov log ,

r r

r

r i i j j i j

i i s s i i j j

i j j j i i i i j j

r i i j j i j

r A i j

r r i j i

X X

X X

X X

k N V

k X X X

α α

α

σ μ σ μ

σ μ σ μ μ μ

μ σ μ μ σ μ σ μ σ μ

σ μ σ μ σ μ

μ μ μ

α

−

−

⎡ ⎤Ω = + + ⎣ ⎦

⎡ ⎤= + + ⎣ ⎦

+ + −

⎡ ⎤= Ω = + + ⎣ ⎦
≈

= Φ −X ( ) _ 0log ( ).j rX α⎡ ⎤ ≠⎣ ⎦ X

 

Thus, the proper propensity function for 2nd-order reactions is different from the rate 

equation. The difference can be ignored only if the contribution from the covariance is 
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insignificant. In general, the rate equation yields only an approximate propensity function 

for stochastic simulations, and the approximation quality must be assessed on a case-by-

case basis. 

 

5) Bimolecular  reaction with real-valued order kinetics 

This type of reaction can be formulated as 

[ ] [ ] [ ] [ ]1( ) ( )
( ) ( )  or ( ) ( ) ,j ji ii j

f ff ff fs s
r i j r i j

d X t dE X t
k X t X t k E X t E X t

dt dt
− −⎡ ⎤ ⎡ ⎤= = Φ⎣ ⎦ ⎣ ⎦ (51) 

{ }, 1, , , , , 0,  and  0,  for all , .s ri rj rsi j N i j f f f s i j∈ ≠ ≠ = ≠…  According to Equations (40)-

(44) we obtain 

( ) ( )
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σ μ σ μ σ μ

μ μ μ

α

+ −

⎡ ⎤Ω = + + ⎣ ⎦

⎡ ⎤= + + ⎣ ⎦

+ + −

⎡ ⎤= Ω = + + ⎣ ⎦

≈ Φ

= ΦX ( )1
_ 0exp cov log , log ( ).j jif ff

i j i j i j rX X f f X X α+ − ⎡ ⎤− ≠⎣ ⎦ X

 

For bimolecular reactions of complex order, the propensity function is different from the 

rate equation. The difference can be ignored only if the contribution from the covariance 

is insignificant. 

 

3.2 Power-law representation of a reversible reaction with feedback 

controls 

We consider a reversible reaction with feedback controls
 
(see Figure 1) whose average 

behaviour is accurately described by the following GMA model  
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1 2 3 3 1 3 31 2 1

31 2

1 1
1 2 3 1 3 .f f f f g g gf f g

f b

dxdx dx
dt dt dt

k x x x k x x− − − − −

= = −

= − Φ + Φ
 (52)  

Here 3S  feeds back to inhibit the forward reaction and 1S  feeds back on the backward 

reaction and accelerates it. The task is to develop a stochastic model whose performance 

converges to that of the deterministic GMA model. We can see from equations (52) that 

three variables 1 2,x x  and 3x  contribute to the forward flux 1 2 3 31 21
1 2 3

f f f ff f
fk x x x− − −Φ and two 

variables 1x and 3x  contribute to the backward flux 1 3 311
1 3

g g gg
bk x x− −Φ . Because several 

variables are involved, their covariance has the potential of affecting the forward and the 

backward propensity functions in a stochastic simulation. To obtain the covariance 

information, we formulate the moment equations (53) from the ODE model (52). 

  

Figure 5.1 Scheme of reversible reaction with feedback controls 

 

To simplify the calculation, as explained in detail  in Additional file 2, we set the third 

central moment  to  zero and obtain a closed-form set of ODEs. Expressed differently, the 

rate of change in mean and covariance depends only on the functions of mean and 

covariance themselves, but not on higher-order moments. Thus,  

 

( )( ) ( )

1 "
2

' ' .

T

T T

V
t

V V V V
t

μ α α σ

σ σ α σ α

∂ ⎛ ⎞≈ +⎜ ⎟∂ ⎝ ⎠
∂

≈ + + Λ
∂

:
 (53)  
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Two initial conditions are chosen for representative simulations; they differ by a factor of 

20 in species populations and reaction volume between the upper and lower panels of 

Figure 2. The purpose is to observe the thermodynamic limit of the systems: both 

scenarios have the same initial concentrations, but the system in the lower panel case has 

a larger species populations and reaction volume and can thus be regarded as the 

thermodynamic limit sample of system in the upper panel.  As demonstrated by the 

figures in the first column, the moment approach predicts that for both population sizes 

the average trajectories of the stochastic model (without propensity adjustment) dynamics 

is lower than that of the equation-based model: the differences are about 10% of steady 

state value of the equation-based model in the upper figure and 1% in the lower figure; 

for 100 runs of stochastic simulation, the steady state value of the equation-based model 

lays outside of the 95% confidence interval in the upper figure while it is inside in the 

lower figure.  Therefore, we can expect that the propensity adjustment will significantly 

contribute to the stochastic simulation for the upper case while not for the lower case. 

This expectation is confirmed by the simulation results in the third and fourth columns. 
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With the common assumption that the deterministic equations precisely capture the 

system’s average behaviour, the case in the upper panel represents the situation where 

propensity adjustment is needed, while the lower panel represents the situation that a 

propensity without adjustment is sufficient when the system approaches its 

thermodynamics limit. This example furthermore demonstrates that either the moment 

approach or the stochastic simulations without propensity adjustment can be used to 

estimate whether there is a need to construct a propensity adjustment function for 

stochastic simulations.  

 
Figure 5.2 Reversible reaction with feedback controls 

In all panels, the y-axis represents the copy number of a species and the x-axis denotes time in seconds. The 

upper panels and the lower panels use two different sets of initial 

conditions: ( ) ( )3
1 2 3(0), (0), (0), 5,5,6,1x x x U mμ= and

( ) ( )3
1 2 3(0), (0), (0), 100,100,120,20x x x U mμ= , respectively. Other simulation parameters 

are ( ) ( )1 2, 3 1 3, , , , , 1.3,1.8, 1,1,1,0.5,0.5f gf f f g g k k = − . In both the upper and lower panels, the first 

column compares the time evolution of 1S  molecules by different ODEs methods: the black line shows the 

solution of Equation (52) for 1x ; the blue lines are the solutions of Equation (53) for 1μ  and 1 1μ σ± , 

respectively. The second column shows the propensity adjustment functions for the forward reaction (solid 

line) and the backward reaction (dashed line). The third column shows 100 independent stochastic 
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simulations with propensity adjustment (blue error bars), in comparison with the ODE (Equation (52)) 

prediction (black line). Fourth column:  a second set of 100 independent stochastic simulations without 

propensity adjustment (blue error bars), in comparison with the ODE (Equation (52)) prediction (black 

line). The red dotted lines framing around mean by either moment-based method or stochastic simulation 

indicate the 95% confidence interval. 

 

3.3 Repressilator 

Interestingly, a propensity function may even be obtained through power-law 

approximation of some function that describes complex transient behaviours of a reaction 

network. As an example, consider the so-called repressilator (Elowitz and Leibler 2000), 

which is a three-component genetic circuit where each component represses its 

downstream neighbour. More specifically (as shown in Figure 3), gene 1G  codes for 

protein 1x , whose dimer 1y  subsequently represses the transcription of the gene 2G . 

Similarly, 2y , the dimer of gene 2G ’s protein product 2x , represses the transcription of 

gene 3G , and 3y , the dimer of gene 3G ’s protein product 3x , represses the transcription of 

gene 1G . The corresponding differential equation model following mass action kinetics is 

given by (Bennett, Volfson et al. 2007) 
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= − + + −

= − − +

= − +

= −

= −

 (54)  

 

where 1, 2,3; 2,3,1; 3,1, 2;i j k= = =  the rate constants are explained in the diagram below  
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Figure 5.3 Reaction scheme of the repressilator 

Gene 1G  codes for protein 1x , whose dimer 1y  subsequently represses the transcription of the gene 2G . 

Similarly, 2y , the dimer of gene 2G ’s protein product 2x , represses the transcription of gene 3G , and 3y , 

the dimer of gene 3G ’s protein product 3x , represses the transcription of gene 1G . 
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Assuming that the reversible dimerization and the dissociation/association of a protein 

dimer from/to the promoter are much faster than other processes, the full systems can be 

reduced to 

 1 1

2

' ( ) ( )

'
1

i i i p i i

i m i
d p k

x p x m p x x

dm m
c c x

σ γ

α γ

− −= −

= −
+

 (55)  

(Bennett, Volfson et al. 2007). 

Here 2 2

4
1, ( ) 1 4

(1 )
d p i

i p i
d p i

c c dx
p x c x

c c x
Φ = = + +

+
, pc κ κ+ −= , dc k k+ −=  and 0, ,i r id d d= +  for 

i=1,2,3. It has been shown that the simplified ODEs rather accurately approximate the 

transient dynamics of the full system by retaining the original oscillation period and 

amplitude.  

 
Figure 5.4 Scaling of the repressilator equations changes the oscillation period in the stochastic 

simulation 

Solid lines represent solutions of ODEs (56), while dotted lines are trajectories of a stochastic simulation; 

blue lines represent 1x  and black lines represent 1m . 

 

In (Bennett, Volfson et al. 2007), the system (55) is further rescaled by setting 

,mt tγ=� � i d p ix c c x= and i ( ) ( )i d p i mm c c mσ γ β= , which yields 
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1 1
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( ) ( )

' .
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i
i i i i

i
i

k

d x p x m p x x
dt

d m d m
dt x

β β

κ

− −= −

= −
+

�

�

 (56)  

Intriguingly, one makes the following observation. The scaled ODE system (56) is 

consistent with the original system (55) in oscillation amplitude and period. However, its 

corresponding stochastic model produces results that deviate substantially from the 

average responses. To see the effects of the transition from a deterministic to a stochastic 

model, we apply SSA to the scaled system (56). The main result is that the oscillation 

periods of both ix  and im  are reduced to half (Figure 4). The reason is that, in the 

stochastic simulation, the oscillation period is very sensitive to the ratio of ix  and im , 

which has been altered by the scaling operation. Therefore, in general one needs to pay 

attention to how scaling may affect the stochastic performance when the model is 

generated through the conversion of an ODE model. 

 

We can see from equations (55) that two variables ix and im  contribute to the production 

of ix ; hence, their covariance could affect the propensity function of ix  in the production 

reaction of a stochastic simulation. Similar to the example of a reversible reaction 

(Equation 52), it is therefore necessary to evaluate covariance effects and to judge 

whether the propensity function needs adjusting. Thus, we need to compare the difference 

between the dynamics of the phenomenological model (55) and the dynamics under the 

influence of covariance, which can be produced by either stochastic simulation or the 

moment approach.  

 

Obtaining the covariance-influenced dynamics with the moment-based approach is 

complicated, and we need to discuss some implementation issues.  
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Figure 5.5 Power-law approximation of 1( )ip x −

 

 A: Approximation of 1( )i iy p x −=  by two straight lines in log-log space. B: Corresponding two-

piecewise power-law function in Cartesian space. Both axes are unitless.   
 

First, the moment-based approach requires information regarding the first and the second 

derivatives of 1( )ip x − , which have rather complicated functional forms. To simplify the 

calculation, we replace the function 1( )ip x −  with an approximating power-law function. 

Specifically, suppose the original parameter values are 5,kκ+ += = 100kκ− −= =  and 

20d = . Plotting the data ( )1, ( )i ix p x − in log-log space (Figure 5.A) indicates that the 

original function is represented well by a straight line: 

log log3.5188 0.9384log ,i iy x= − . 

at [30,300]ix ∈  In Cartesian space, this line corresponds to the power-law function 

0.93843.5188 ,i iy x −=
 

which models the original function very well (see Figure 5.B). For [1,30]ix ∈ , this power 

law function does not fit the original function precisely; the effect of this imprecision can 

be evaluated latter at after we use this power law function in the moment-based method. 

 

A B
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Moreover, using the truncated moment equations to estimate the mean and variance 

involves multiple approximations: First, the function 1( )ip x −  on the right-hand side of 

(55) is replaced by a power-law function (see Figure 5). Second, the result is 

approximated by Taylor expansion to the second order. Third, similar to the example of a 

reversible reaction, the central moment of the third degree is assumed to be zero, which 

leads to a closed-form ODE for the first two moments.  

 

Solving the technical issues as described, one obtains the corresponding moment-based 

model of (55) (not shown) with results shown in the Figure 6.  We assume that one’s 

concerns are the period and amplitude of oscillation within of the time interval between 0 

and 400 seconds. As show in Figure 6, the GMA approximation (black dashed line) fits  

the original ODEs (bold black solid line) very well at the beginning but as time goes on 

and the approximation error is accumulated.  As seem at the time interval of [350, 400] 

the GMA approximation deviate from the original ODEs significantly. However, it does 

not mean that this GMA approximation can not be used as propensity function for 

stochastic simulation; the moment-base method based on the GMA approximation shows 

that when the GMA approximation is used as propensity function (without adjustment) 

for stochastic simulation, the resulted mean (red solid line) consistently fit the trajectory 

of the original ODEs (bold solid black line) very well up to T=400 second. The 

oscillation period and amplitude by the stochastic simulation based on the GMA 

approximation (without adjustment) are almost identical to those of the original ODEs. 

Therefore propensity adjustment for the GMA approximation is not needed; this GMA 

approximation can be use as propensity function for stochastic simulation 
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Figure 5.6 A comparison of the dynamics of repressilator using the original ODEs, GMA 

approximation and its corresponding moment-based ODEs. The mean of the moment-based ODEs 

based on the GMA approximation fits the original ODEs very well up to T=400s. Black bold line: original 

ODEs; black dashed line: the GMA approximation; Red line: mean of the moment-based ODEs based on 

the GMA approximation; red dashed line framing around the red line: standard deviations around the mean 

by moment-based ODEs. X-axis is time in second, Y-axis is the number of 1x   

molecules without unit. 

Therefore, a stochastic model for the repressilator system can be generated by using the 

scheme in (32) without propensity adjustment. Moreover, the imprecision caused by 

power law approximation can be tolerated when its corresponding moment-based mean 

matches well the original ODEs in the sense of the most interested features. 

 

3.4 Enzymatic reaction using a quasi-steady state assumption (QSSA) 

We consider an enzymatic reaction following the Michaelis-Menten mechanism: 

1
2

1

.
k

k

k
E S ES P E

−

+ ⎯⎯→ +U  
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Here enzyme E reacts with substrate S through a reversible reaction to form complex ES, 

which can proceed to yield product P and to release the enzyme E. By assuming the law 

of mass action for the reaction kinetics we obtain a set of differential equations for the 

system dynamics: 

 ( )

( ) ( )

1 1 0

1 0 1 2

2

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ],

d S k ES k S E ES
dt

d ES k S E ES k k ES
dt

d P k ES
dt

−= − −

= − − +

=

 (57)  

where the total amount of enzyme in the form of free enzyme and complex 

0[ ] [ ] [ ]E E ES+�  is assumed to be constant. In addiction, by making the so-called quasi 

steady state assumption (QSSA) (Michaelis and Menten 1913; Segel 1988), assuming 

that the complex ES is essentially in steady state, we can assert [ ] 0d ES
dt

≈ . As it has 

been discussed many times in the literature, QSSA reduces the system and leads to the 

approximate form 

 max

max

[ ][ ]
[ ]

[ ][ ] ,
[ ]

m

m

V Sd S
dt K S

V Sd P
dt K S

= −
+

=
+

 (58)  

which is known as Michaelis-Menten kinetics (Michaelis and Menten 1913). The 

characterizing parameters are max 2 0[ ]V k E=  and 1 2 1( )mK k k k−= + . 

 

Applying QSSA, Rao and Arkin (Rao and Arkin 2003) were able to reduce the CME of S 

and ES to a CME only containing S. For the reduced CME, the propensity function for 

the overall reaction S P→  is  
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 max( ) ,
m

V ss
K s

α =
+

 (59)  

where the volume was scaled so that 1Φ = and the lower-case letter s denotes the 

molecule count of species S. Instead of reviewing the relatively complicated 

manipulations with CME, we show in the following that the techniques described above 

lead directly from the equation-based model to the propensity function for the reduced 

system.  

 

First, we recast the equation-based model into the GMA format (Savageau and Voit 

1987), by introducing an auxiliary variable [ ] [ ]mT K S+� . The result, 

 1
max

1
max

[ ] [ ][ ]

[ ] [ ] [ ][ ]

d S V S T
dt

d T d S V S T
dt dt

−

−

= −

= = −
 (60)  

is exactly equivalent to the reduced system in (58) with the initial condition 0[ ]S and 

0 0[ ] [ ]mT K S= +  . The corresponding stochastic model has only one reaction channel and 

the propensity function is 

 1
max( , ) .s t V stα −=  (61)  

The propensity adjustment factor can be set to 1 because T is a function of s and its 

covariance with s is therefore 1. By applying mt K s= + , the propensity function can be 

simplified as  

 1 1
max max( , ) ( ) ( ).ms t V st V s K s sα α− −= = + =  (62)  

Thus, we arrive at the propensity function for the reduced system, which is identical to 

the result of Rao and Arkin obtained through manipulations of CME. 
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In the above derivation, we used the simplest type of recasting, where a new, auxiliary 

variable simply consists of an old variable plus a constant. This reformulation of the 

Michaelis-Menten process as a pair of GMA equations is a special case of a much more 

general recasting technique that permits the equivalent conversion of any system of 

ordinary differential equations into a power-law format (Savageau and Voit 1987). 

However, this equivalence transformation imposes constraints on the variables of the 

GMA equations, and it is at this point unclear whether there are mathematical warranties 

ensuring that the proposed transition from differential to stochastic equations indeed 

preserves these constraints in all cases. This question will require further investigation. 

 

3.5 Stochastic Focusing 

Stochastic focusing (Paulsson, Berg et al. 2000) describes the phenomenon that the 

fluctuations of a chemical species can drive the system to reach a different steady state 

than what a deterministic ODE model predicts. To demonstrate the utility of propensity 

adjustment, we derive a stochastic model which produces consistent results with those of 

the deterministic model. 

 

Following (Twomey 2007), we consider the following reactions system  

 31 2

4

6

5

kk k

k

k

k

I P

I S S

S

φ φ

φ

⎯⎯→ ⎯⎯→ ⎯⎯→

+ ⎯⎯→

ZZZXYZZZ

 (63)  

This system can be interpreted as follows: the  intermediate species I is produced at 

constant rate 1k  from some sourceφ  and degrades with rate 4k  through the catalysis with 

signalling molecule S; the end product P is converted from species I at rate 2k  and 

degrades at rate 3k ;  the signalling molecule S is produced and degrades at rates 5k  and 

6k , respectively. Moreover, the value of 5k  is reduced to half at a certain time point to 



 167

achieve a significant divergence effect. In order to capture the average dynamics of the 

system accurately, we use a power-law model in GMA format instead of the mass action 

rate law in (Twomey 2007).  

 
1 2 4

2 3

5 6

SI ffdi k k i k i s
dt
dp k i k p
dt
ds k k s
dt

= − −

= −

= −

 (64)  

The system size is set to 1. We can see from equations (64) that two variables i and s  

contribute to the degradation of I  and that their covariance could therefore affect the 

propensity function of I  in the degradation reaction of a stochastic simulation. To 

calculate the propensity adjustment function  [ ]( )4 ( ) exp cov log ( ), log ( )I Spaf t f f I t S t= −  

for reaction 4
4 : kR I S S+ ⎯⎯→ , we formulate equations (cf. (60)) for the moments  as 

 

( )( ) ( )

1 "
2

' ' .

T

T T

V
t

V V V V
t

μ α α σ

σ σ α σ α

∂ ⎛ ⎞≈ +⎜ ⎟∂ ⎝ ⎠
∂

≈ + + Λ
∂

:
 (65)  
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The stochastic focusing model without propensity adjustment yields results quite 

different from those of the deterministic model, as is illustrated in Figure 7. In this figure, 

the blue lines in the 1st  panel are predicted from the moment equations (65) and the blue 

error bars  for Pμ  in the 2nd  panel  are obtained from ten independent stochastic 

simulations. Both diverge systematically from the black line predicted by ODE model 

(64). By contrast, the stochastic model with propensity adjustment produces results 

consistent with the deterministic model, as shown by the 4th  panel.   
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Figure 5.7 Stochastic focusing 

The first panel compares the time evolution of product molecules P obtained with different methods: black 

line represents the solution of ODE model (64) for P; blue solid line and blue dashed lines are the solutions 

of moment-based model (65) for Pμ  and P Pμ σ± , respectively. The second panel indicates that the 

stochastic simulations without propensity adjustment (blue error bar) diverge from the prediction by the 

ODEs model (64) (black line). The third panel shows the propensity adjustment 

function [ ]( )4 ( ) exp cov log ( ), log ( )I Spaf t f f I t S t= −
 

for the reaction 4
4 : kR I S S+ ⎯⎯→ . The 

fourth panel shows that the propensity adjustment function 4paf  achieves convergence between the 

stochastic simulation and the ODE model (64) (black line): the blue error bar was computed from 100 

independent stochastic simulations with propensity adjustment 4paf . The simulation parameters are   

( ) ( )4 3 3 4 3
1 2 3 4 5 6(0), (0), (0), , , , , , , , 0,10,100,10 ,10 ,1,9.9 10 ,10 ,10 ,1.1,0.9I Si p s k k k k k k f f = × ; 

at t=0.1, the value of 5k changes from 410  to 40.5 10× .  
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Discussion and Conclusion 

 

Gillespie’s stochastic simulation algorithm (SSA), as well as later variants, permits three 

kinds of elementary reactions to be modelled: 0th, 1st and 2nd order reactions that are 

assumed to follow the law of mass action. All other types of reactions, containing non-

integer kinetic orders and/or following other types of kinetic law, are assumed to be 

convertible to one of these three kinds, so that SSA can validly be applied. However, the 

conversion to elementary reactions is often difficult, infeasible, or simply impossible. 

First, the kinetic parameters of the underlying elementary reactions are in many cases 

unknown for a complex-order reaction. Second, even when all elementary kinetic 

parameters are available, the multitude of reaction channels and participating species 

creates a combinatorial complexity that renders SSA simulations computationally 

impractical. Within a deterministic framework, model reduction is a possible and often-

used strategy to address such challenges. For example, a reduced mechanistic model, 

such as the Michaelis-Menten rate law, is often proposed to fit the experimental data, at 

the cost of sacrificing the original mechanistic interpretation. The reduction in these cases 

simplifies the original formulation by approximating, merging, or omitting intermediate 

reaction steps and reactants. It would be beneficial to adopt a similar reduction strategy to 

stochastic modelling. However, we have shown here that caution is necessary.  

 

We have shown that the direct use of a rate constant or a rate function f as the propensity 

function in a stochastic simulation algorithm requires that at least one of the following 

assumptions be true: 

1) f is a linear function; this assumption has been validated in the Results sections 

addressing 0th-order and 1st-order reaction kinetics. 
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2) the reaction is monomolecular; this assumptions was evaluated in the Results 

section describing real-valued order monomolecular reaction kinetics. 

3) all iX  in the system are noise-free variables, i.e., without (or with ignorable) 

fluctuations; this assumption implies that the covariance of any two participating 

reactants is zero (or close to zero). This assumption is assessed in equations (29 - 

36).  

Each of these three conditions is a sufficient condition for the direct use of a rate function 

f as the propensity function. Moreover, these statements are valid for function of general 

format, not just for GMA. This is so because the functional formats in cases 1 and 2 

above are special cases of the GMA format. For the third case, a formal proof is only 

given for functions in GMA format, because this structured format allows us to give an 

explicit estimation on how the covariance can affect the average behavior of a stochastic 

simulation through equation (34). For functions not in GMA format, the conclusion is 

still holds, although an analogous explicit estimation is lacking. The argument is as 

follows. The bimolecular reaction [ ]( ( ))rE tα X    contains at least one quadratic moment 

of the form ( ) ( )i jE X t X t⎡ ⎤⎣ ⎦  (cf. (Gillespie 2007) and page 38). Therefore, by definition of 

the covariance, [ ] [ ] ( )( ) ( ) ( ) ( ) cov ( ), ( )i j i i i jE X t X t E X t E X t X t X t⎡ ⎤ = +⎣ ⎦ , we obtain 

[ ] [ ]( ) ( ) ( ) ( )i j i iE X t X t E X t E X t⎡ ⎤ = ⇔⎣ ⎦  ( )cov ( ), ( ) 0i jX t X t = . 

This result implies the following: If the covariance between every pair of random 

variables is zero (or ignorable), [ ] [ ]( ) ( ) ( ) ( )i j i iE X t X t E X t E X t⎡ ⎤ =⎣ ⎦  and therefore 

[ ] [ ]( ( )) ( ( ) )r rE t E tα α=X X . Expressed in words, the expectation of the propensity 

function on left-hand side of equation (29) equals its rate function, and the rate function 

can be directly used as propensity function in stochastic simulations. 
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 If at least one of the three assumptions is satisfied, the stochastic simulation 

algorithm (SSA) is applicable without changes. 

 

In the past, efforts have been made to manipulate the chemical master equation (CME) in 

order to achieve a proper propensity function for a reduced system (e.g., see (Rao and 

Arkin 2003)). However, manipulations of CME are usually complicated, and successes 

have been modest and rare. Here we propose an alternative strategy for converting a 

reduced dynamical model into a stochastic analogue. To achieve this conversion, we 

addressed two fundamental issues: First, under what conditions can a deterministic, 

equation-based model be validly used in stochastic simulations? And second, what is a 

proper strategy to implement such a conversion?   

 

To address the first question, we showed that the following steps are necessary: 

(1) A concentration-based model needs to be converted into a particle-based model 

by accounting for the size of the system; if the concentration-based model is 

scaled (as was illustrated with the repressilator example), it may first have to be 

un-scaled in order to render the conversion valid; 

(2) The difference between the mean of a stochastic model without propensity 

adjustment and the corresponding quantities of the equation-based model should 

be evaluated. The mean of the stochastic model is obtained either through 

stochastic simulations or through a moment-based approach. If the difference is 

significant, then an adjustment of the propensity function for a non-elementary 

reaction is necessary. 

To answer the second question, we need to execute the following steps 
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(3) Compute a propensity adjustment function, either through simulated or 

experimental data or through a moment-based approach, in order to achieve the 

corrected propensity function (41);  

(4) Apply SSA or one of its variants using a propensity function with adjustment to 

obtain valid simulation trajectories.      

 

When the propensity needs adjusting, an accurate propensity adjustment function (paf) is 

essential for obtaining the proper correction of the propensity. It is usually impossible to 

compute paf exactly, which necessitates a suitable approximation. The approximation 

error in paf originates from the following sources:  

1) The expression of paf in Equation  (40) is a function of the mean, variance, and 

covariance, which are computed with a 2nd-order Taylor expansion in log space.   

2) The moment-based approach, from which the functions of mean, variance and 

covariance are usually derived, is an approximation method that yields a closed 

ODE system for the moments. In the method used here, the propensity function is 

approximated by a 2nd-order Taylor expansion, and the moments up to a certain 

degree (2 in our treatment) are retained, while all higher moments are assumed to 

be zero. One might expect that a higher-order Taylor expansion would improve 

the accuracy of paf, but it would come with a much higher computational cost. 

The error control of paf and the relative computational issues should be addressed 

in future studies. 

 

Since computation cost is a major concern with the stochastic simulation of large 

biochemical reaction networks, another issue has yet to be addressed. Namely, how does 

the propensity function of a reduced system affect the accuracy and efficiency of various 

leaping methods that have been proposed to speed up SSA? Moreover, the question of 
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molecular population sizes requires further analysis. Our derivation assumed large 

reactant populations, but simulations of a reversible pathway indicated that the method 

works rather well even for small populations. A more careful investigation of this issue of 

population size in different scenarios is still needed and should be the subject of further 

research.   
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Appendixes 

Appendix A–Derivation of the mean and variance of a power-law function of random 

variables 
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Appendix B –Computation of approximate mean and covariance for a generic propensity 

function to be used in stochastic simulations 
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Abstract 

 

Models based on mass action kinetics are widely used but, in a strict sense, limited to 

biochemical reactions in dilute solution, where reactants freely diffuse and react in an 

unobstructed space. Modeling diffusion-reaction kinetics in a crowded environment, such 

as the cytoplasm, requires fractal-like ordinary differential equation (ODE) models. In 

particular, generalized mass action systems have been proposed and successfully 

validated for this purpose. In this paper, we establish two novel, particle-based methods 

to simulate biochemical diffusion-reaction systems within crowded environments. We 

distinguish two conceptually different situations. In the first, the ODEs capture a 

microscopic “reaction-only” mechanism, while diffusion is modeled separately. In the 

second case, the ODEs model the combined effects of both reaction and diffusion. This 

distinction consequently leads to two simulation methods that both effectively simulate 

and quantify crowding effects, including reduced reaction volumes, reduced diffusion 

rates, and reduced accessibility between potentially reacting particles. The proposed 

methods account for fractal-like kinetics, where the reaction rate depends on the local 

concentrations of the molecules undergoing the reaction. Rooted in an agent based 

modeling framework, this aspect of the methods offers the capacity to address 

sophisticated intracellular spatial effects, such as macromolecular crowding. 

 

Introduction  

It is well known that the cytoplasmic environment is highly structured and crowded, and 

that it is thus significantly different from the typical biochemical milieu in vitro. The 

intracellular concentration of macromolecules is 50-400 mg/ml, which is much higher 

than the typical 1-10 mg/ml in an aqueous solution (Fulton 1982). In addition, the 

fraction of the intracellular volume occupied by macromolecules is estimated to be 0.2-
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0.3 for cytoplasm (Ellis 2001); even 0.4 has been reported for E. coli (Zimmerman and 

Trach 1991). The same authors estimate that, when 30% of the volume of a solution is 

occupied by identical globular molecules, less than 1% of the remaining space is 

available for additional molecules of the same size, due to an “excluded volume” effect 

caused by steric repulsion, which results in mutual impenetrability of macromolecular 

solutes (Zimmerman and Trach 1991). The high concentration of macromolecules inside 

the cell is commonly known as macromolecular crowding. This crowding is a physically 

nonspecific effect that affects both the free energy and the mobility of macromolecules, 

resulting in slower diffusion and altered macromolecular reaction rates and equilibria. For 

instance, the apparent translational diffusion rate in a crowded environment is 5-20 times 

slower than in saline solution (Elowitz, Surette et al. 1999). Moreover, the observed 

diffusion is often anomalous in a sense that it is sub-linear, as opposed to linear in vitro, 

and that it scales with the mean-squared displacement of molecules over time (Weiss, 

Elsner et al. 2004). While macromolecular crowding tends to impede diffusion, it actually 

enhances the reaction speed nonspecifically, due to the reduction in total available 

volume. Possibly enhanced reactions include the formation of macromolecular complexes 

in solution, binding of macromolecules to surface sites, the formation of insoluble 

aggregates, and compaction or folding of proteins. However, the magnitude of the effect 

is strongly determined by the relative sizes and shapes of concentrated crowding species 

and on the dilution of the macromolecular reactants and products. Thus, macromolecular 

crowding is generally expected to increase the rate of slow, transition-state-limited 

association reactions and to decrease the rate of fast, diffusion-limited association 

reactions (Zhou, Rivas et al. 2008).  

Macromolecules of different types and abundances are heterogeneously 

distributed within the living cell. For a cell with a size at the order of mμ , chemical 

concentrations usually range from nM  to Mμ , corresponding to molecular numbers at 

the order of a few dozen to thousands (Grima and Schnell 2008; Ishihama, Schmidt et al. 
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2008). Given that the fluctuation of a collection of N particles is at the order of 1/ 2N (van 

Kampen 2007), fluctuations in small numbers of reactants are likely to affect the system 

dynamics. The stochastic effects originating from spatial heterogeneity and small 

numbers of reactants have been associated with important biological consequences, as it 

has been demonstrated by numerous examples, including microtubule formation 

(Dogterom and Leibler 1993), ultrasensitive modification and de-modification reactions 

(Paulsson, Berg et al. 2000), plasmid copy number control (Paulsson and Ehrenberg 

2001), noise-induced oscillations (Vilar, Kueh et al. 2002) and metabolite dynamics (Elf, 

Paulsson et al. 2003). 

Various spatial modeling methods have been developed to simulate intracellular 

biochemical reactions in crowded environments. According to the level of detail in 

treating molecular objects, these methods can be divided into three categories: macro-, 

meso- and microscopic.  

 

Macroscopic methods characterize the state of a system through mean-field 

approximations. Partial differential equations (PDE) belong to this category (Slepchenko, 

Schaff et al. 2002; Francke, Postma et al. 2003; Slepchenko, Schaff et al. 2003; 

Mayawala, Vlachos et al. 2006). Although they are among the most computationally 

scalable computational methods for spatial phenomena, it is difficult to let them account 

for stochastic effects that derive from structured environments and small numbers, 

because they are genuinely deterministic. More importantly in the present context, it is 

difficult to use PDEs to represent complicated spatial effects such as macromolecular 

crowding, confinement and absorption, which require details regarding molecular shapes 

and sizes, as well as the heterogeneity of the reaction space.  

 

Mesoscopic methods treat molecules individually yet do not trace their exact location in 

subspace. Among them, spatial Gillespie methods usually divide the total reaction space 
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evenly into identical subvolumes, and Gillespie-type algorithms are applied to simulate 

each subspace (Stundzia and Lumsden 1996; Elf, Doncic et al. 2003; Rodríguez, 

Kaandorp et al. 2006; Grima and Schnell 2007). To satisfy the homogeneity requirement 

of Gillespie’s algorithms, the size of each subvolume needs to be chosen small enough so 

that every reactive species can be regarded as uniformly distributed. This is achieved by 

ensuring that the frequency of molecular diffusion events between adjacent subvolumes 

is much higher than the reaction frequency within each subvolume. Thus, at each time 

step, each molecule, represented as a point particle, either reacts within its current 

subvolume or diffuses to an adjacent subvolume. The reaction probability is determined 

by a propensity function, while the diffusion probability is 2D l , where D is the 

diffusion rate and l  is the side length of the subvolume.  To the best of our knowledge, 

all mesoscopic methods developed so far treat molecules as point particles, and crowding 

effects on either reaction or diffusion have not been effectively simulated.  

 

Microscopic methods treat every molecule as a distinct computational object and trace 

its position in a continuous space or on a discrete lattice over time. Focusing on this 

molecular level of detail, unsurprisingly, these methods are computationally very 

expensive. Depending on their treatment of space, microscopic methods can be further 

divided into two groups: 

 

• Lattice based diffusion-reaction models discretize the total reaction space into 

regular polygons (Lee, Dinner et al. 2003; Ander, Beltrao et al. 2004; Hattne, 

Fange et al. 2005; Eide and Chakraborty 2006; Mayawala, Vlachos et al. 2006; 

Rodríguez, Kaandorp et al. 2006). Usually, only one or a few particles are 

allowed within each polygon, depending on the relative shape and size of the 

molecules and the lattice. Diffusion is modeled as a particle’s random walk 

among available lattice points, and bimolecular reactions occur with some 
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probability when two reactive particles encounter one another in the same lattice 

location. Lattice based methods permit a simple treatment of space. However, the 

artificial nature of the space limits spatial resolution and may introduce biased 

movements, a phenomenon collectively called lattice anisotropy. Moreover, it is 

difficult for lattice based methods to account for volume exclusion effects with 

molecular species of different sizes and shapes. 

 

• Off-lattice diffusion-reaction methods (Stiles and Bartol 2001; Andrews and 

Bray 2004; van Zon and Ten Wolde 2005; Grima and Schnell 2006) explicitly 

track every particle’s position in a continuous space over time. Particles have 

certain probabilities to react when they encounter one another within some fixed 

reaction radius, which is computed from specified macroscopic reaction rates. 

Off-lattice particle based methods can account for volume exclusion effects, but 

only when particles are treated with shape and size instead of being volume-less 

points.  

 

In this paper we develop two novel, microscopic particle-based methods to 

simulate a biochemical diffusion-reaction system within a crowded environment, which 

typically is the cytoplasm. The novel contributions of these methods are the following. 

First, by its nature, an ODE is deterministic and continuous and does not account for 

spatial features. However, after embedding the ODE into a method accounting for spatial 

effects, their combination is applicable in discrete, stochastic, and spatial simulations. 

This embedding can be implemented in two distinct ways, in which phenomenological 

ODEs play different roles; we will discuss these later. Second, the two proposed methods 

effectively simulate and quantify crowding effects, including reduced reaction volumes, 

reduced diffusion rates, and reduced accessibility between potentially reacting particles. 

Third, the proposed methods account for fractal-like kinetics, where the kinetic reaction 
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rate depends on the local concentrations of the molecules undergoing the reaction; this 

aspect is, to the best of our knowledge, novel in the field of stochastic simulations. 

Rooted in an agent based modeling framework, this aspect of the methods offers the 

capacity to address sophisticated intracellular spatial effects, such as macromolecular 

crowding, active transport along cytoskeleton structures, and reactions on heterogeneous 

surfaces as well as in porous media. 

We first demonstrate the validity of the proposed methods with representative 

elementary types of biochemical processes in non-crowded spaces: an association 

reaction ( fkA B C+ ⎯⎯→ ), a dissociation reaction ( dkC A B⎯⎯→ + ), and their 

combination—the reversible reaction f

d

k

k
A B C+ ZZZXYZZZ . These reactions will be modeled 

with power-law functions, according to the tenets of Biochemical Systems Theory 

(Savageau 1969 a; Savageau 1976; Voit 2000; Torres and Voit 2002). After this initial 

validation, we quantify macromolecular crowding effects theoretically and numerically 

through examples of enzymatic reactions.  Finally, we investigate an actual experimental 

system representative for molecular crowding, namely the binding of dansylamide and 

carbonic anhydrase in artificial media (Neff, Offord et al. 2011), and discover some 

surprising results.  

 

Methods 

 

Motivation for power-law representations of reactions in crowded media 

Power-law functions with non-integer kinetics have proven very useful in biochemical 

systems analysis, and forty years of research have demonstrated their wide applicability 

(e.g., see (Savageau 1969 a; Savageau 1976; Voit 2000; Torres and Voit 2002)). 

Generically, this type of description of a biochemical reaction can be seen either as a 

Taylor approximation in logarithmic space or as a heuristic or phenomenological model 
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that has been applied successfully hundreds of times and in different contexts, even 

though it is difficult or impossible in many situations to trace it back to first mechanistic 

principles. A particularly interesting line of support for the power-law format can be seen 

in the example of a bimolecular reaction occurring in a spatially restricted environment. 

Savageau demonstrated with theoretical arguments that the kinetics of such a reaction can 

be validly formulated as a generalization of the law of mass action, where non-integer 

kinetic orders are allowed (Savageau 1993; Savageau 1995). More recently, Neff and 

colleagues showed with careful experiments that this formulation is indeed valid and 

more accurate than alternative approaches (Bajzer, Huzak et al. 2008; Neff 2010; Neff, 

Offord et al. 2011).  

As demonstrated many times in the field of Biochemical Systems Theory, and 

most recently within the context of stochastic kinetic modeling (e.g., (Wu, Vidakovic et 

al. 2011)), the rate of the association reaction between molecules of species 1S  and 2S  

can be represented as a power-law function of the form [ ] [ ]1 2

1 2( ) ( )f fk X t X t . In this 

formulation, k is a rate constant and 1f  and 2f  are real-valued kinetic orders, which are 

not necessarily positive integers as in typical mass action laws. A generic example is the 

bi-directional bimolecular reaction 1 2 3

f

b

k

k
S S S+ U . Adapting ideas from Neff and 

colleagues (Neff 2010), we formulate a discrete update function for the population of 3S  

molecules within a time interval Δt as 

  [ ] [ ]( ) [ ]( )3 3 1 2 1 2 3 3( ) - ( ) ,   -  .x t t x t f X X t x x g X tx+ Δ = Δ Δ   (1)  

The right-hand side contains two terms. The first, [ ] [ ]( )1 2 1 2,  f X X t x xΔ , describes the 

production of 3S and can be interpreted as the statement “among all possible collisions 

1 2x x ,  some fraction [ ] [ ]( )1 2,f X X tΔ
 
reacts and forms the product.” In a dilute and well-
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mixed environment, [ ] [ ]( )1 2,f X X  reduces to a traditional rate constant, and the reaction 

obeys the law of mass action. However, in a spatially restricted environment, crowding 

effects need to be taken into account. Savageau (Savageau 1993; Savageau 1995) 

demonstrated that the appropriate fraction of a reaction in this case is a function that 

depends on the current concentrations of 1S  and 2S . Similar to the first term, the 

degradation term [ ]( )3 3g X txΔ  represents the fraction [ ]( )3g X tΔ  of species 3S  that 

dissociates back into 1S  and 2S  as a fraction that may depend on some functional form of 

[ ]3X , because the complex may not be able to dissociate effectively in a crowded 

environment.  

Taking the limit t 0Δ →  in Eq. (1) yields the differential equation  

  [ ] [ ]( ) [ ]( )3
1 2 1 2 3 3,  -  .dx f X X x x g X x

dt
=   (2)  

 

and Taylor series expansion in the logarithmic space [ ] [ ]( )1 2log , log , logX X f  around 

some operating point ( ), , ( , )a b f a b  leads to 

  [ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( )
[ ] [ ]

[ ] [ ]( )
[ ] [ ]

[ ] [ ]

1 2 1 2

1 2
1

1 ( , )

1 2
2

2 ( , )

1 2

log , log , log

,
( , ) (log )

,
(log ) HOT

+ log + log .

a b

a b

f

f X X F X X

f X X
F a b X a

X

f X X
X b

X

k X Xα β

∂
= + −

∂

∂
+ − +

∂

≈

�

  (3) 

As is typical, the parameters , ,and fk α β depend on the chosen operating point (a, b). 

Ignoring all higher order terms (HOT) beyond the constant and linear terms transforms 

the term in (3) back to the Cartesian space: 
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  [ ] [ ]( ) [ ] [ ]1 2 1 2, , .fk
a af X X k X X k eα β≈ =   (4)  

 

The same procedure yields a power-law expression for the degradation term: 

[ ]( ) [ ]3 3dg X k X γ
≈ . Combining constants leads to a power-law representation for the 

dynamics of species 3S , namely  

  [ ] [ ] [ ]( )[ ][ ] [ ]( )[ ]

[ ] [ ] [ ]1 2 3

3
1 2 1 2 3 3

1 2 3 ,

a d

f f f
a d

d X
k X X X X k X X

dt
k X X k X

α β γ= −

= −

  (5)  

where 1 2 31, 1,  and 1.f f fα β γ= + = + = +  

 One notes that these considerations apply to all formats within Biochemical 

Systems Theory, so that the results for GMA systems reported below also apply to 

models in alternative the S-system format (Savageau 1969 a; Savageau 1976; Voit 2000; 

Torres and Voit 2002). 

 

Extensions of strict ODE representations 

The derivation of methods for stochastic simulations in crowded environments is similar 

in spirit to recent literature reports (Pogson, Smallwood et al. 2006; Klann, Lapin et al. 

2011), but entails three important distinctions: First, in addition to the association 

reaction, as discussed in the earlier work, we also consider the reverse dissociation 

reaction. Second, the kinetic rates for both association and dissociation reactions are 

considered to be concentration (and therefore time) dependent, which is a generalization 

of the constant value discussed in the two references. Finally, we distinguish two 

situations where a phenomenological ODE plays different roles. In the first method, the 

ODE is used to characterize only the reaction kinetics, while Brownian random walk is 

used to implement the diffusion process, so that the resulting reaction-diffusion dynamics 
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is in general different from the reaction-only ODE prediction. In the second method, the 

ODE is assumed to characterize a species concentration, which is driven by the combined 

effect of reaction and diffusion; therefore, it is only applicable to a homogeneous system.  

 This conceptual distinction has consequences. With the first method we are able 

to give a theoretical characterization and prediction of how diffusion affects the system 

dynamics, whereas the second method allows us to characterize the microscopic reaction 

mechanism with which the two reacting molecules collide. The two methods are first 

developed and validated in an unobstructed space. Afterwards, crowding agents are 

added to create a virtual, crowded environment, and the effects of crowding on the 

reaction-diffusion system will be quantified and demonstrated. 

  

Method 1: Extending a reaction-kinetic ODE to spatial stochastic modeling 

 

i) Association reaction  

 

Consider the bimolecular association reaction 1 2 3
akS S S+ ⎯⎯→ , which we model with the 

term [ ] [ ]1 2

1 2( ) ( )f f
ak X t X t , as discussed before. Under the idealistic assumption of perfect 

and instant mixing, the diffusion rate is infinite, and the reaction dynamics follows the 

equation 

 

  [ ] [ ] [ ] [ ] [ ]1 21 2 3
1 2

( ) ( ) ( )
( ) ( ) .f f

a

d X t d X t d X t
k X t X t

dt dt dt
= = − = −   (6)  

 

To characterize the concentration dependence of the kinetic rate, we introduce the 

notation [ ] [ ]1 21 1
_ 1 2( ) ( ) ( )f f

a concentration ak t k X t X t− −� and convert the equation into the mass-

action-like format 
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  [ ] [ ] [ ] [ ][ ]1 2 3
_ 1 2

( ) ( ) ( )
( ) ( ) ( ) ,

.

a concentration

d X t d X t d X t
k t X t X t

dt dt dt
= = − = −   (7)  

where the rate “constant” depends on time. To distinguish this formulation from the case 

of a traditional mass action representation, _ ( )a concentrationk t  is called a concentration-

dependent kinetic rate function.  

 Now consider the dynamics of species 1S . The concentration based equation for 

1S  can be converted into the corresponding particle-based equation  

 

  ( ) 1 2 1 2
11

1 2
( ) ( ) ( )f f f f

a A
dx t k N V x t x t

dt
− −= −   (8)  

by the relationship  [ ] ( )( )
A

x tX t
N V

= , where AN  is the Avogadro number and V is the total 

variable reaction volume. In this conversion, one needs to pay special attention to the 

appropriate units. In the following, we use Mμ  as concentration unit, mμ  as the spatial 

unit, and s as the unit for time. With these settings, the unit for the association rate 

constant ak  is ( ) ( ) 1 21 2
11 1 21 3 110 /

f ff fM s mol m sμ μ
− −− − − − −= and the unit for _ ( )a concentrationk t  

is ( ) 1 1M sμ − − . Thus, ( ) 1 21 f f
a Ak N V − − , the coefficient in Eq. (8) takes the form 

 

 
( ) ( ) ( )

( )

11 21 2

1 2

11 231 21 3 1 3

1 1

6.023 1010 /

602.3 .

ff ff f
a A a

f f
a

k N V k mol m s V mmol

k V s

μ μ
− −− −− − − −

− − −

×= ×

=
 

(9)  
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Here, ak and V on the left-hand side are quantities that take the numerical values of ak  

and V  on the right-hand side, respectively. Eq. (9) demonstrates that the time unit on the 

right-hand side of Eq. (8) is 1s− , which is consistent with that of the left-hand side.  

 In a similar manner (see Eq.(11)), we define the particle-based association kinetic 

rate function as 

 

  ( ) 1 2 1 2
1 1 1

_ 1 2( ) ( ) ( ) ,f f f f
a particle a Ak t k N V x t x t− − − −�   (10)  

 

which can be converted back to the mass action format 

 

 
( ) 1 2 1 2

1 1 11
1 2 1 2

_ 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

f f f f
a A

a particle

dx t k N V x t x t x t x t
dt

k t x t x t

− − − −⎡ ⎤= − ⎣ ⎦
= −

  (11)  

by using the particle-based GMA Eq.(8). Moreover, _ ( )a particlek t is related to 

_ ( )a concentrationk t  in the following manner: 

 

  ( )

( )

( )

1 2 1 2

1 2

1 1 1
_ 1 2

1 1
1 1 2

1
_

( ) ( ) ( )

( ) ( )

,

f f f f
a particle a A

f f

A a
A A

A a concentration

k t k N V x t x t

x t x tN V k
N V N V

N V k

− − − −

− −
−

−

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=

�

  (12)  

which, with the assumed units, becomes ( ) 1
_ _( ) 602.3a particle a concentrationk t V k

−
= . 

 Discretizing Eq. (11) yields  
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  1
_ 1 2

( ) ( ) ( ) ( ).a particle
x t k t x t x t

t
Δ

= −
Δ

  (13)  

Here 1( )x tΔ is the number of 1S molecules that were changed due to association reactions 

fired during the time interval ( ),t t t+ Δ . Expressed differently, within tΔ , the proportion 

  _ 21

1

( ) ( )( )
( )

a particletk t Vx tx t
x t V

ΔΔ
=   (14)  

of 1S  molecules participating in association reactions corresponds to the ratio between 

_ 2( ) ( )a particletk t Vx tΔ  and V . The numerator _ 2( ) ( )a particletk t Vx tΔ  on the right-hand side is 

the portion of the volume where association reactions occur. This effective reaction 

volume is occupied by a total of 2 ( )x t  molecules of type 2S  and therefore can be evenly 

divided and assigned to every 2S  molecule as 

 

( ) 1 2 1 2

_

1 1 1
1 2

( )

( ) ( ) .

reaction a particle

f f f f
a A

V tk t V

tk N V x t x t V− − − −

Δ

= Δ

�
  (15)  

In other words, when one 1S  molecule enters into the volume reactionV  which encloses an 

2S  molecule, the two molecules react with probability 1.  Moreover, with Eq. (9), it is 

easy to see that the unit of reactionV  is 3mμ , confirming that the definition of reactionV  is 

appropriate. 

 In the special case of a mass action reaction where 1 2 1f f= = , the reaction volume 

does not depend on the concentration:  

  1.reaction a AV tk N −= Δ   (16)  

 

By similar reasoning, one obtains a symmetric result for 2S : 
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  _ 12 1

2

( ) ( )( ) ( ) .
( )

a particle reactiontk t Vx tx t V x t
x t V V

ΔΔ
= =   (17)  

Eq. (17) implies that, when one 2S  molecule enters into reactionV  enclosing a 1S  molecule, 

the two molecules react. By assuming a spherical reaction volume, it is useful to 

introduce the concept of the reaction radius as 

 

( ) 1 2 1 2

1/3

1/3

_

1/3
1 1 1

1 2

3
4

3 ( )
4

3 ( ) ( ) ,
4

reaction reaction

a particle

f f f f
a A

r V

tk t V

tk N V x t x t V

π

π

π
− − − −

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= Δ⎜ ⎟
⎝ ⎠

⎡ ⎤= Δ⎢ ⎥⎣ ⎦

  (18)  

i.e., one 1S  molecule and one 2S molecule react with probability 1 when the distance 

between them is less than or equal to reactionr . For generalized mass action kinetics, the 

reaction radius is a function of concentrations, while in the special case of standard mass 

action kinetics, the reaction radius reduces to 
1/31/3 33

4 4
a

reaction
A

tkr V
Nπ π

⎡ ⎤Δ⎛ ⎞= Δ = ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

, which 

again is concentration independent.  

  

ii) Dissociation reaction  

We also consider, within the conceptual framework of power-law representations, the 

dissociation reaction 3 1 2
dkS S S⎯⎯→ +  where the rate of dissociation is given as 

[ ] 3

3( ) f
dk X t . Here dk  is the dissociation rate constant with unit ( ) 31 1fM sμ − − and 3f  is a 

real-valued kinetic order, which is not necessarily 1 as it is assumed in a mass action law.  

The concentration-based equation for the systems dynamics is 
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  [ ] [ ] [ ] [ ] 33 1 2
3

( ) ( ) ( )
( ) .f

d

d X t d X t d X t
k X t

dt dt dt
= − = − = −   (19)  

The concentration based equation of 3S  can be converted into the corresponding particle-

based equation as before, namely 

 

  ( ) 3 3
13

3
( ) ( ) .f f

d A
dx t k N V x t

dt
−= −   (20)  

In order to characterize how the substrate concentration affects the kinetic rate, one 

defines the particle-based dissociation kinetic rate function as 

  ( ) 3 3
1 1

_ 3( ) ( ) ,f f
d particle d Ak t k N V x t− −�   (21)  

 

which transforms (20) back to the apparent mass action format 

 

  3
_ 3

( ) ( ) ( ),d particle
dx t k t x t

dt
= −   (22)  

 

where however kd_particle is not necessarily constant. Discretizing yields  

 

 
3

_
3

( )
( ).

( ) d particle

x t
tk t

x t
Δ

= Δ   (23)  

Here 3

3

( )
( )

x t
x t
Δ

 is the proportion of 3S  molecules participating in dissociation reactions 

within tΔ , which equals the probability for each 3S molecule to fire a dissociation 

reaction during tΔ , i.e., 
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  _ ( ).d d particlep tk t= Δ   (24)  

 

In the generalized mass reaction framework, the firing probability dp  of a dissociation 

event is a function of the substrate concentration, which represents the restricting effects 

of the crowded environment on the dissociation process. By contrast, in the idealized 

dilute case where the mass action law holds, 3 1f =  implies d dp tk= Δ , which means that 

the dissociation probability becomes concentration independent. 

 

 

 

 

iii) Particle-based diffusion  

Suppose that the position of a diffusing particle at time t is ( )( ), ( ), ( )X t Y t Z t . Within an 

obstacle-free space, the particle diffuses freely and its position 

( )( ), ( ), ( )X t t Y t t Z t t+ Δ + Δ + Δ  at time t t+ Δ  is updated by the equations 

  ( ) ( ) 2 ,

( ) ( ) 2 ,

( ) ( ) 2 ,

x

y

z

X t t X t D t

Y t t Y t D t

Z t t Z t D t

γ

γ

γ

+ Δ = + Δ

+Δ = + Δ

+Δ = + Δ

  (25)  

where D is the diffusion rate constant, and where ,x yγ γ  and zγ  are random numbers that 

are independently sampled from the normal distribution with zero mean and unit variance 

(Chandrasekhar 1943).  

 In simulations, the time step tΔ  needs to be small enough so that the average 

diffusion distance of reactants 1 22( )D D t+ Δ  within tΔ  should be less or equal to the 

reaction radius reactionr , i.e.  
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( ) 1 2 1 2

1/ 3
1 1 1

1 2 1 2
32( ) ( ) ( )

4
f f f f

reaction a AD D t r tk N V x t x t V
π

− − − −⎡ ⎤+ Δ ≤ = Δ⎢ ⎥⎣ ⎦
, which implies  

 
( ) 1 2 1 2

2
1 1 1

1 2

3
1 2

3 ( ) ( )
4 .

8( )

f f f f
a Ak N V x t x t V

t
D D

π
− − − −⎡ ⎤

⎢ ⎥⎣ ⎦Δ ≤
+

 
(26)  

Here 1D and 2D are the diffusion rate constants for the potentially reacting particles and 

therefore 1 2D D+  is the effective diffusion rate.  

 The dynamics of the reaction system can be assessed with the following 

algorithm.  

 

Algorithm 1.1 

 

Initiation  

1. Choose the size of time step tΔ according to Eq. (26) at t=0. 

 

Iteration 

While max ,t T≤ repeat 

2. Association reactions: For each 1S  molecule react with any one of the 2S  

molecules within the collision radius reactionr : replace the 1S  molecule with an 3S  

molecule and remove the 2S  molecule. 

3. Dissociation reactions: For each molecule of species 3S , generate a random 

number u which is uniformly distributed in (0, 1).  If du p≤ , the 3S  molecule 

dissociates into one 1S  molecule and one 2S  molecule; the two newly generated 

molecules are set apart from one another with a distance reactionr , and the center of 

mass remains at the original location of the 3S  molecule. 



 199

4. Diffusion: update each molecule’s location according to Eq. (25).  

5. Update tΔ  according to Eq.(26). 

6. .t t t= + Δ  

End while.  

 

Algorithm 1.1 is computationally expensive. For instance, with typical parameters 

2 1 3
1 2 1 210 , 1, 1D D m s f f V mμ μ−= = = = = and 1 11ak M sμ − −= , Δt is very small 

( 710t s−Δ ≈ ), thus requiring huge numbers of simulation steps for processes within 

realistic time intervals of seconds and minutes.  The situation is even more severe for 

faster diffusing molecules. To overcome this computational limitation, while reducing the 

simulation time considerably, we introduce the collision volume collisonV which has a 

bigger radius than the reaction volume reactionV , so that a larger simulation time step is 

allowed. Now, the two reacting molecules encounter each other within collisonV  through 

diffusion, but only react with reaction probability  

 
,reaction

reaction
collison

Vp
V

�   (27)  

 which is less than 1. By assuming a spherical collision volume, we can define the 

collision radius as 

  1/33 .
4collision collisionr V
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

  (28)  

With either collisonV or collisonr chosen, the simulation time step can computed as  

  2/3

2
3

4 .
6 6

collision
collision

V
rt

D D
π

⎛ ⎞
⎜ ⎟
⎝ ⎠Δ = =  

(29)  
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In practice, collisonV or collisonr  are often chosen to be large enough to satisfy 

1reaction
reaction

collison

Vp
V

= � , which yields the following benefits: 1) A bigger simulation time 

step tΔ  is allowed to accelerate the simulation; 2) In the scenario of the bidirectional 

association-dissociation reaction, the two molecules resulted from a dissociation reaction 

are placed in the same physical location or next to one another; however, their proximity 

does not cause them to react right away, because of a small association reaction 

probability; 3) There could be more than one reacting 2S  molecule within collisonr of a 

1S molecule. According to the law of addition for independent events, the probability for 

the 1S  molecule to react with one of the n neighboring 2S  molecules is np, and in our 

case we find 1np ≤ . Instead of generating O(n) random numbers to test whether the 1S  

molecule reacts with one of its n neighboring 2S  molecules, only one random number is 

required to account for multiple neighbors, thereby improving the simulation efficiency. 

 Implementing the above considerations, a particle-based algorithm to simulate 

concentration-dependent reactions can be summarized as follows. 

 

 

 

Algorithm 1.2 

Initiation  

1. Select collisonV  or  collisonr . 

2. Set the size of time step tΔ  according to Eq. (29). 

 

Iteration 

While max ,t T≤ repeat 
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3. Association reactions: For each 1S  molecule denote n as the number of 2S  

molecules within its collision radius collisionr . Sample a uniform random number u 

from (0, 1).  If ,reaction
reaction

collison

Vu np n
V

≤ =  then the 1S  molecule reacts with an 

arbitrary 2S  molecule, selected from among the n candidates; otherwise, no 

association reaction occurs to this 1S  molecule within tΔ . 

4. Dissociation reactions: For each molecule of species 3S , generate a random 

number u which is uniformly distributed in (0, 1).  If du p≤ , the 3S  molecule 

dissociates into one 1S  molecule and one 2S  molecule; the two newly generated 

molecules are set next to one another with a distance collisionr and with the center of 

mass remaining at the original 3S  molecule location. If du p> , no dissociation 

reaction occurs to this 3S molecule within tΔ . 

5. Diffusion: update each molecule’s location according to Eq.(25). 

6. .t t t= + Δ  

End while.  

 

In summary, the diffusion-reaction process is simulated in Method 1 with the 

following strategies:  

 

1) Bimolecular reaction mechanisms, characterized in terms of reaction volume, 

reaction radius, and reaction probability upon collision, are constructed solely 

from ( )ak t , with the information defined in the phenomenological reaction Eq. 

(8), which is formulated as an ODE. 

2) The diffusion is implemented as a Brownian process. 
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3) The combined effects of diffusion and reaction are no longer captured by the 

phenomenological reaction Eq. (8), which only contributes to the reaction aspect 

of the simulation. (Note: We will show later that the combined effect can be 

predicted by Eq. (43), which incorporate both diffusion and reaction effects.) 

 

As an alternative to this Method 1, we present in the next section a different particle-

based simulation method that adopts a distinctly different logical starting point: the 

combined effects of diffusion and reaction are captured by the phenomenological Eq. (8). 

We will show how to construct the microscopic reaction mechanism upon particle 

collision, which, as it turns out, depends on diffusion. 

 

 

 

 

Method 2: An ODE for diffusion-controlled reactions in a homogeneous system  

Consider the bimolecular association reaction 1 2 3
akS S S+ ⎯⎯→ . Within the framework of 

diffusion-controlled reaction theory (Smoluchowski 1917; Berg and von Hippel 1985), 

the bimolecular reaction process is divided into two steps: first, two reactants come into 

contact or proximity through diffusion; second, upon encounter, the two molecules react 

with a certain probability, which is determined by factors such as their relative 

momentum and orientation. More specifically, in 3D space, the collision rate of two 

spherical molecule 1 and 2 is given by 

 12 1 24 ( ).Dk r D Dπ= +  (30)

Here 12r  represents the interaction distance of two molecules.  In the case that the two 

molecules interact through direct contact, 12 1 2r r r= + , which is the sum of the radii of the 

two molecules. In the case that the two molecules come to an interaction under an 
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electromagnetic field, the effective interaction radius is 12 1 2r r r> + . For our assumption 

regarding units ( Mμ for concentration unit, mμ for spatial unit, s for time unit), the unit 

for the diffusion rate is 2 /m sμ , and the unit for a collision rate constant _D concentrationk  is 

therefore 3 /m sμ . By virtue of the relationship ( ) 13 1 602.3m s Msμ μ −− = , the above 

formula can be converted into an expression with unit ( ) 1Msμ − ,  

 ( )_ 12 1 2602.3 4 ,D concentrationk r D Dπ= × +  (31)

which is concentration-based and consistent with the unit of _ ( )a concentrationk t . Furthermore, 

using reasoning as in the context of Eq. (12), the concentration-based collision rate 

_D concentrationk  can be rewritten as a particle-based collision rate: 

 ( )

( ) ( )
( )

1
_ _

1
12 1 2

1
12 1 2

602.3 602.3 4

4 .

D particle A D concentrationk N V k

V r D D

V r D D

π

π

−

−

−

=

= × +

= +

 (32)

 

The collision rate represents the maximal reaction rate in the situation that two 

colliding molecules react with 100% probability. However, in general, not every 

encounter between two molecules leads to a reaction. To quantify the percentage of 

successful reactions upon collision, the microscopic reaction rate microk  is defined. The 

combination of the collision rate and the microscopic reaction rate leads to the effective 

reaction rate effectivek (Berg and von Hippel 1985), which is observable at the macroscopic 

level and corresponds to the reaction rate in ODE models:  

 

_

1 1 1 .
effective micro D concentrationk k k

= +  (33)
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Since both effectivek and _D concentrationk  are either measurable or can be calculated, microk  can 

be calculated through the above equation, even though it can usually not be measured 

directly through an experiment. 

In dilute milieus where mass action kinetics holds, all these rates are constant in 

time. By contrast, in crowded media where the generalized mass action rate law is used to 

characterize the system dynamics phenomenologically, effectivek  is a function of time and 

reactant concentrations. In situations of crowding, the diffusion rate is observed to reach 

a steady value after some initial phase where diffusion with a time-dependent rate, termed 

anomalous diffusion (Bouchaud and Georges 1990; Weiss, Elsner et al. 2004), is 

observed. The assumption that the reactants’ diffusion rates remain constant in time 

implies that the collision rate is a constant and therefore mandates that the microscopic 

reaction rate is a function of time and concentrations. Although a time and concentration 

dependent microscopic reaction rate at first seems to contradict the intuition that the 

affinity of two reacting molecules is a biophysical property and thus constant in time, it 

has become an acceptable formulation, because the underlying physical principles are not 

entirely understood. It is also unclear how environmental crowding agents 

nonspecifically affect the orientation and affinity of reacting molecules (Zhou, Rivas et 

al. 2008). As a result, a phenomenological characterization of the microscopic reaction 

rate may be interpreted as an aggregation of these unknown effects. Therefore, in order to 

summarize the crowding effects at a microscopic level, by applying _effective a concentrationk k=  

to Eq. (33), we introduce the concentration-based microscopic rate function 

 

[ ] [ ]
[ ] [ ]

1 1

1 1

_ _
_

_ _

1 1
_ 1 2

1 1
_ 1 2

.

D concentration a concentration
micro concentration

D concentration a concentration

f f
D concentration a

f f
D concentration a

k k
k

k k

k k X X

k k X X

− −

− −

=
−

=
−

 (34)

The corresponding particle-based analogue is  
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 ( ) 1
_ _ .micro particle A micro concentrationk N V k−=  (35)

 

By applying _ ( )reaction a particleV tk t VΔ� , as defined in Eq. (15), the reaction volume 

corresponding to _micro particlek  is  

 

 _

1
_ .

micro micro particle

A micro concentration

V tk V

tN k−

= Δ

= Δ
 (36)

 

Under the assumption of spherical volumes, the microscopic reaction radius can be 

defined as  

 1/33 .
4micro micror V
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (37)

 

microV is unlikely to be equivalent with the collision volume 
3

124
3
rπ , but this mismatch can 

be adjusted by introducing the reaction probability of association  

 
3

12

,
4

3

micro
micro

Vp
rπ

=  (38)

 

which expresses that two molecules react with probability microp when they come closer to 

each other than  micror .  

 With these specifications, the simulation of a diffusion-reaction process can be 

implemented as the following algorithm. 
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Algorithm 2 

Initiation:  

1. Select 12 1 2r r r≥ + and set the size of the time step as 
2

12

6
rt

D
Δ = . 

 

Iteration 

While max ,t T≤ repeat 

2. Association reactions: For each 1S  molecule denote n as the number of 2S  

molecules within its collision radius micror . Sample a uniform random u number 

from (0, 1).  If ,microu np≤  then the 1S  molecule reacts with an arbitrary 2S  

molecule from among the n 2S  molecules; otherwise, no association reaction 

occurs with this 1S  molecule within tΔ . 

3. Dissociation reactions: For each molecule of species 3S  generate a uniform 

random number u from (0, 1). If du p≤ , the 3S  molecule dissociates into one 1S  

molecule and one 2S  molecule. The two newly generated molecules are set next 

to one another with a distance micror  and with the center of mass remaining at the 

original location of the 3S  molecule. If du p> , no dissociation reaction occurs to 

this 3S  molecule. 

4. Diffusion: update each molecule’s location according to Eq.(25). 

5. .t t t= + Δ  

End while.  

 

It is clear that Algorithm 2 is only different from Algorithm 1 by replacing 

reactionr by micror  and reactionp  by microp . Though similar in format, these two algorithms are 
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based on distinctly different concepts and assumptions and will therefore yield different 

results. The differences will be first discussed theoretically and then demonstrated 

through numerical examples. 

 

 

Results 

 

Distinction between Algorithms 1 and 2: theoretical considerations 

 

We first re-exam Algorithm 1 in the context of diffusion-controlled reaction theory and 

develop a formula to predict how diffusion affects the system dynamics. In Algorithm 1 

two reacting particles react with probability reaction

collison

Vp
V

=  as they come closer than the 

collision radius collisonr . This approach can be dissected into two steps: First, the two 

particles need to encounter one another within the collision volume 
34

3
collison

collison
rV π

= ; 

this encounter rate is given by 

 ( )1 24 .D collisonk r D Dπ= +  (39)

Here the unit of Dk  is 3 1m sμ − . Using the earlier relationship ( ) 13 1 602.3m s Msμ μ −− = , the 

above formula can be converted into an expression with unit ( ) 1Msμ − ,  

 ( )_ 1 2602.3 4 ,D concentration collisonk r D Dπ= × +  (40)

which is concentration-based and consistent with the unit of _ ( )a concentrationk t . Furthermore, 

with reasoning similar to Eq. (12), _D concentrationk  can be reformulated as a particle-based 

rate constant: 
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 ( )

( )
( )

1
_ _

1
_

1
1 2

602.3

4 .

D particle A D concentration

D concentration

collison

k N V k

V k

V r D Dπ

−

−

−

=

=

= +

 (41)

 

Second, upon collision, the two particles react with a probability that is the ratio 

of reaction volume and collision volume, i.e., reaction

collison

Vp
V

= .  

As a reminder, Algorithm 1.1 uses _ ( )a particlek t  as the microscopic reaction rate 

microk , which gives rise to the reaction volume ( )reaction reactionV tk t VΔ� , within which two 

molecules react with probability 1.  To improve the computational efficiency, a larger 

size collision volume collisonV  is used instead of reactionV , and the mismatch is adjusted by 

introducing reaction probability reaction
reaction

collison

Vp
V

= . 

The particle-based effective kinetic rate is given by combining the particle-based 

collision rate and the microscopic reaction rate as 

 

 

( )

1

_
_

1

1
_ 1 2

1 1

1 1 .
4

effective particle
micro D particle

a particle collison

k
k k

k V r D Dπ

−

−

−

⎛ ⎞
= +⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞
= +⎜ ⎟⎜ ⎟+⎝ ⎠

 (42)

 

Under the condition that reactants are homogeneously distributed, _ ( )effective particlek t  gives 

rise to the particle-based, diffusion-controlled reaction ODE  
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( )

1
_ 1 2

1

1 21
_ 1 2

( ) ( ) ( ) ( )

1 1 ( ) ( ).
( ) 4

effective particle

a particle collison

dx t k t x t x t
dt

x t x t
k t V r D Dπ

−

−

= −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (43)  

This diffusion-controlled reaction ODE assesses the effects of diffusion on the system 

dynamics: in general,  

 

( )

_
_ _

_
1

1 2

.
1

8

a particle
effective particle a particle

a particle

collison

k
k kk

V r D Dπ−

= <
+

+

 
(44)  

 

 When ,D⎯⎯→∞ we obtain _ _( ) ( )effective particle a particlek t k t⎯⎯→ . In words: when the 

diffusion rate becomes large, the dynamics of the diffusion-controlled reaction system 

(Eq.(43)) converges to that of the well-stirred system 1
_ 1 2

( ) ( ) ( ) ( )a particle
dx t k t x t x t

dt
= − , 

which was given in Eq. (11). Therefore, Algorithm 1 can be used to detect the influence 

of diffusion on the overall system dynamics, no matter whether the reactants are 

homogeneously distributed or not. 

By contrast, Algorithm 2 starts with the assumption that the phenomenological 

ODE captures the combined effect of reaction and diffusion, which leads to 

_ _( ) ( )effective particle a particlek t k t= . Based on this assumption, the algorithm traces the 

microscopic reaction rate microk through the general diffusion-controlled reaction 

relationship 
_ _

1 1 1

effective particle micro D particlek k k
= + , in order to define a particle-based reaction 

scheme. Therefore, no matter what the diffusion rate is, the simulations of a 

homogeneous system in Algorithm 2 will always yield the same overall system 

dynamics, namely     
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  1
_ 1 2

( ) ( ) ( ) ( )a particle
dx t k t x t x t

dt
= − , 

 

which corresponds to Eq. (11). 

 

 

Numerical Confirmation of Methods 1 and 2 

 

Assessment of association reactions 

Consider a reaction-diffusion system with input, where initially the reactants 1 2,S S  and 

3S  are homogeneously distributed within a cube and assumed to diffuse with rate D. The 

reaction scheme 

1

2

1

2

1 2 3

,

,

,a

c

c

k

S

S

S S S

φ

φ

⎯⎯→

⎯⎯→

+ ⎯⎯→
 

 

can be modeled with the GMA reaction-only equations 
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( ) (602.3 ) ( ) ( ) ( ),

( ) (602.3 ) ( ) ( ) ( ),

( )

f f
a

f f
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f f
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d X t
c k X t X t

dt
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c k X t X t
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d X t
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dt

dx t c V k t x t x t
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dx t c V k t x t x t
dt

dx t k
dt

⎧
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⎪
⎪

= −⎨
⎪
⎪

=⎪
⎩

= −

= −

= 1 2( ) ( ) ( ),rticle t x t x t

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

  (45)  

where the first system is concentration based and the second particle based. 

Using Algorithm 1, the dynamics of a homogeneous system can be assessed by 

the corresponding diffusion-control reaction ODEs 

 
1

1 _ 1 2

2
2 _ 1 2

3
_ 1 2

( ) (602.3 ) ( ) ( ) ( ),

( ) (602.3 ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

effective particle

effective particle

effective particle

dx t c V k t x t x t
dt

dx t c V k t x t x t
dt

dx t k t x t x t
dt

⎧ = −⎪
⎪
⎪ = −⎨
⎪
⎪ =⎪⎩

  (46)  

 

where _ ( )effective particlek t is defined as in Eq. (42). As discussed in the previous section, the 

dynamics of Eq. (46) converges to that of the Eq.(45) as D⎯⎯→∞ . 

The upper panel of Fig.1 shows some representative results. When the diffusion 

rate is low (e.g., D=0.16 or D=0.32) the simulations with Algorithm 1 significantly 

diverge from the prediction of the reaction-only Eq. (45), which does not account for 

diffusion. By contrast, the system behavior is very well captured by the diffusion-

controlled reaction Eq. (46). As the diffusion rate increases (e.g., D=1.6 or D=3.2), the 
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trajectories of the diffusion-controlled reaction Eq. (46) converge to those of the reaction-

only Eq. (45), and both ODEs can be used to approximate the stochastic simulations with 

sufficient accuracy.  

The lower panel of Fig.1 shows an application of Algorithm 2 to a homogeneous 

system with a wide range of diffusion rates (40-fold differences). The system dynamics is 

always consistent with the prediction of the reaction-only Eq.(45).   

 

 

 

Assessment of a dissociation reaction 

Consider a reaction-diffusion system with constant input, where the reactants 1 2,S S and 

3S  are initially homogeneously distributed in a cube and assumed to diffuse with rate D. 

The reaction scheme 

3
3

3 1 2

,

,d

c

k

S

S S S

φ ⎯⎯→

⎯⎯→ +  

 

can be modeled with the GMA equations 
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[ ] [ ]
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( ) ,

( )
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d

f
d

d X t
k X t
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d X t

k X t
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d X t
c k X t
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⎧
=⎪

⎪
⎪

=⎨
⎪
⎪

= −⎪
⎩

  (47)  

 The dissociation reaction is concentration dependent; however it is by its nature 

not affected by diffusion. Therefore the dissociation simulation is formulated in the same 
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way in both, Algorithm 1 and Algorithm 2. The system dynamics can be predicted by the 

corresponding particle-based reaction-only equations, which are diffusion independent:  

 
1

_ 3

2
_ 3

3
3 _ 3

( ) ( ) ( ),

( ) ( ) ( ),

( ) (602.3 ) ( ) ( ).

d particle

d particle

d particle

dx t k t x t
dt

dx t k t x t
dt

dx t c V k t x t
dt

⎧ =⎪
⎪
⎪ =⎨
⎪
⎪

= −⎪⎩

  (48)  

 

The results in Fig.2 confirm that the simulations with the spatial stochastic model 

using Algorithm 1 (or Algorithm 2) are diffusion independent and consistent with the 

prediction by Eq.(48). 

 

Assessment of reversible reactions 

Consider a closed reaction-diffusion system where the reactants 1 2,S S and 3S are initially 

distributed homogeneously within a cube and we assume that they diffuse with rate D. 

The reaction scheme 

1 2 3
a

d

k

k
S S S⎯⎯→+ ←⎯⎯

 

 

can be modeled with the GMA equations 
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k X t k X t X t
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d X t

k X t k X t X t
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d X t
k X t X t k X t
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dx t k t x t k t x t x t
dt
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⎧
= −⎪

⎪
⎪

= −⎨
⎪
⎪

= −⎪
⎩

= −

= _ 1 2
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_ 1 2 _ 3

) ( ) ( ) ( ),
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a particle

a particle d particle

k t x t x t

dx t k t x t x t k t x t
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⎧
⎪
⎪
⎪ −⎨
⎪
⎪

= −⎪⎩

  (49)  

Here the first set of equations represents the concentration-based GMA model, while the 

equations in the second set are particle-based. The diffusion-controlled reaction equations 

for a homogeneous system are 

 
1

_ 3 _ 1 2

2
_ 3 _ 1 2

3
_ 1 2 _ 3

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ).

d particle effective particle

d particle effective particle

effective particle d particle

dx t k t x t k t x t x t
dt

dx t k t x t k t x t x t
dt

dx t k t x t x t k t x t
dt

⎧ = −⎪
⎪
⎪ = −⎨
⎪
⎪

= −⎪⎩

  (50)  

 

Fig.3 shows results of simulations with the spatial stochastic model using 

Algorithm 1. They diverge significantly from the prediction with the reaction-only kinetic 

Eq.(49) for low diffusion rates. However, they are well captured by the diffusion-

controlled reaction in Eq. (50). As the diffusion rate increases, the trajectories of the 

diffusion-controlled reaction (Eq. (50)) converge to those of the particle-based reaction-

only Eq. (49), and both ODEs can be used to predict the homogeneous stochastic 

simulations at high diffusion rates. 
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Models of reactions in crowded media 

 

Creating crowded media with Netlogo 

A crowded medium can be created virtually by filling a reaction volume with inert 

objects (see Fig.4). In particular, using the agent-based software Netlogo (Wilensky 

1999), one can create crowded media with the following algorithm:  

1. Select the crowding factor [0,1)crowdednessp ∈ . 

2. Calculate the number of cubic space units (patches in Netlogo) that will be 

turned into impenetrable “blocks”:   _ _blocking patch crowdedness total patchN p N= × . 

3. Randomly select _blocking patchN out of total _total patchN patches as crowding 

blocks by setting their inner variable avail?= false. 

4. If a molecule is located at a block (patch with avail?= false), move it to the 

nearest free (non-block) location (i.e., patch with avail?= true.). 

 

Within a crowded medium, the molecular diffusion can be implemented by moving a 

molecule for the longest possible diffusion distance until it hits a block. More 

specifically,  

1. Randomly choose a direction in the 3D space. 

2. Divide the total diffusion distance collisionR  within 
2

6
collisionRt

D
Δ =  into n (say, 

n=5) equal mini steps, each with size 1
collisionR

n
. 
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3. Repeat moving the molecule along the chosen direction for a distance of 

1
collisionR

n
 and stop: if (1) n repeats are completed; or (2) the molecule arrives 

at a block, i.e., at a patch with avail?= false; in this case move the molecule 

backward for the distance of 1
collisionR

n
 along the given direction. 

With a portion crowdednessp  of total patches turned into blocks that cannot be penetrated, the 

available reaction volume is reduced from V to ( )1 crowdednessp V− .  

 

Quantifying crowding effects 

Crowding reduces the reaction volume, the particle diffusion rate, and accessibility 

between reacting particles. Inspired by (Klann, Lapin et al. 2011), we quantify these 

crowding effects with the example of a simple enzymatic reaction model. In this model, 

the substrate S is created through a zero-th order reaction 1k Sφ ⎯⎯→  with constant rate 

1k and is consumed by the enzymatic reaction 2kS E P E+ ⎯⎯→ + , which is assumed to 

follow a simple mass action kinetic with enzyme E and association rate constant 2k . 

Because Methods 1 and 2 start with different assumptions, we will quantify the crowding 

effects with two distinct approaches. The quantification of crowding effects within the 

framework of Method 2 is constructed in a similar manner as in (Klann, Lapin et al. 

2011), while it is different within the framework of Method 1. 

 

Quantifying crowding effects within the framework of Method 1. Assuming an idealized, 

infinite diffusion rate, the reaction system can be described by the concentration-based 

model  

  [ ] [ ][ ]1 2

( )
( ) ,S

S E

d X t
k k X t X

dt
= −   (51)  
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where [ ]EX  represents an enzyme concentration with constant value. To simulate the 

system stochastically, we consider the corresponding particle-based expressions of the 

previous equation   

  1
1 2

( ) ( ) ( ) ( )S
A A S E

dx t k N V k N V x t x
dt

−= − .
  (52) 

 Within the framework of Method 1, Eq. (51) or Eq. (52) only describes the 

reaction kinetic, while the diffusion aspects are implemented in the simulation by 

Brownian diffusion. The overall reaction can be mathematically described by an ODE, if 

the system is homogeneous and diffusion is fast. However, if the diffusion rate is not 

sufficiently large for this approximation, we need to consider the diffusion effect through 

the diffusion-controlled reaction equation  

 

( )

1

1 1 1
2

( ) 1 1( ) ( ) .
( ) 4

S
A S E

A collison E S

dx t k N V x t x
dt k N V V r D Dπ

−

− −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (53)  

 The simulation strategy for implementing the diffusion-controlled reaction in a 

crowded medium is the following. First, we consider the effect of the reduced reaction 

volume. In crowded media, the effective volume is reduced from V to 

( )1effective crowdednessV V p= −  due to the occupancy of inert particles.  

 Two distinct approaches can be proposed to simulate a zero-th order reaction in 

crowded media at the microscopic level; the reduced reaction volume affects these 

practices differently. In the first approach, one generates substrate molecules at the same 

rate 1( )Ak N V  as in a diluted environment, which implies that, in unit time, one drops the 

same total number of substrate molecules into a decreased effective reaction volume 

effectiveV  as one does with the original reaction volume V. Under this practice, the 

concentration-based reaction rate for the zero-th order reaction will increase from 1k in 
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the original volume case to ( ) 1
1 1 crowdednessk p −−  in the case of a reduced volume. In the 

second approach, one generates substrate molecules at a reduced rate 

( )1 1( ) ( ) 1A crowded A crowdednessk N V k N V p= − , i.e., in unit time one drops a smaller number of 

substrate molecules into a reduced effective reaction volume effectiveV than one does with 

the original reaction volume V. Under this practice, the concentration-based reaction rate 

for a zero-th order reaction maintains the same 1k for both cases of the original or the 

reduced volume. Since the first practice is closer to what people do in controlled 

experiments, we will model this practice. This choice will also give us a clearer picture of 

how the same number of reactants will act differently in the diluted versa the crowded 

medium.  

 For completeness we also mention the effect of a reduced reaction volume on 

dissociation reactions, which however is not pertinent for this example: the reaction rate 

becomes ( ) 3 3
1 1

_ 3( ) ( ) .
f f

d particle d A effectivek t k N V x t
− −=  For the simulation of a second-order 

bimolecular reaction in crowded media at the microscopic level, we choose the reaction 

rate constant as 1
2 ( )A effectivek N V − in order to represent the effect of the increased effective 

concentration in the crowded medium. The concentration-based reaction rate for second-

order reactions will maintain the same as 2k  in both the original volume case and the 

reduced volume case. 

 With these simulation settings, the reaction-diffusion process occurring within a 

fully available reaction volume (without crowding obstacles) with reduced size effectiveV  is 

captured by 



 219

 

( )

( ) ( )

1

1 1 1
2

1
1

1 1 1
2

( ) 1 1( ) ( )
( ) 4

1 1( ) 1 ( ) .
( ) 4

S
A S E

A effective effective collison E S

A crowdedness S E
A collison E S

dx t k N V x t x
dt k N V V r D D

k N V p x t x
k N V V r D D

π

π

−

− −

−
−

− −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞
= − − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (54) 

This result demonstrates that, due to the reduced reaction volume, the second rate term is 

increased by a factor called the reduced-reaction-volume effect 

  ( ) 11 .volume crowdednessF p −−�   (55)  

 

Second, we consider the effect of a reduced diffusion rate. When the diffusion rates of S 

and E are reduced from SD  and ED  to _S effD and _E effD , respectively, the diffusion-

reaction Eq. (54) becomes   

 

( ) ( )

1

1
1 1 1

2 _ _

( ) 1 1( ) 1 ( ) .
( ) 4

S
A crowdedness S E

A collison E eff S eff

dx t k N V p x t x
dt k N V V r D Dπ

−

−

− −

⎛ ⎞
⎜ ⎟= − − +
⎜ ⎟+⎝ ⎠

  (56) 

By defining a reduced-diffusion effect factor 

 

( )

( )

( )

( )

1

1 1
2 _ _

1

1 1
2

2

2

_ _

1 1
( ) 4

1 1
( ) 4

1
4

.

1
4

A collison E eff S eff
diffusion

A collison E S

A collison E S

A collison E eff S eff

k N V V r D D
F

k N V V r D D

k
N r D D

k
N r D D

π

π

π

π

−

− −

−

− −

⎛ ⎞
⎜ ⎟+
⎜ ⎟+⎝ ⎠

⎛ ⎞
+⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞
+⎜ ⎟⎜ ⎟+⎝ ⎠=

⎛ ⎞
⎜ ⎟+
⎜ ⎟+⎝ ⎠

�

  (57)  

Eq. (56) becomes 
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( )

1

1 1 1
2

( ) 1 1( ) ( ) .
( ) 4

S
A volume diffusion S E

A collison E S

dx t k N V F F x t x
dt k N V V r D Dπ

−

− −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (58) 

 

Eq. (58) says that, in order to reflect the reduced diffusion rate, one needs to multiply the 

second term of Eq. (53) by diffusionF . 

 Third, we consider the accessibility of the reacting particles. Due to the volume 

exclusion by obstacles, reacting particles have a lesser chance to encounter one another. 

The reduced accessibility leads to a further reduction of the second term of Eq.(58) by 

another factor accessF , leading to 

 

 

( )

1

1 1 1
2

( ) 1 1( ) ( ) .
( ) 4

S
A volume diffusion access S E

A collison E S

dx t k N V F F F x t x
dt k N V V r D Dπ

−

− −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (59) 

 

accessF could theoretically be derived from first principles of statistical physics; however, it 

is for our purposes easier to use an empirical way to estimate this factor. When the 

system represented by Eq. (59) reaches its steady state _st crowded
Sx , one obtains 

 

 

( )

1

_
1 1 1

2

1 10 ( ) ,
( ) 4

st crowded
A volume diffusion access S E

A collison E S

k N V F F F x x
k N V V r D Dπ

−

− −

⎛ ⎞
= − +⎜ ⎟⎜ ⎟+⎝ ⎠

  (60)  

which implies 



 221

 
( ) ( )

( )
( )

1
2_ 1 1

2 _ _

1
_ 1 1

2 _ _

1 1
( ) 4

1 1 1 .
( ) 4

access effective A
A collison E eff S eff

A crowdedness
st crowded

S E A collison E eff S eff

F k N V
k N V V r D D

k N V p
x x k N V V r D D

π

π

−

− −

− −

⎛ ⎞
⎜ ⎟= +
⎜ ⎟+⎝ ⎠

⎛ ⎞−
⎜ ⎟= +
⎜ ⎟+⎝ ⎠

  (61) 

 

Quantifying crowding effects within the framework of Method 2. Within the framework of 

Method 2, the following equation captures the system dynamics. It accounts for the 

combined effects of both reaction and diffusion as 

 [ ] [ ][ ]1 2

( )
( ) ,S

S E

d X t
k k X t X

dt
= −   (62)  

where [ ]EX  represents the constant enzyme concentration.  

 To simulate the system stochastically, we consider the corresponding particle-

based representation of the previous equation 

  1
1 2

( ) ( ) ( ) ( ) .S
A A S E

dx t k N V k N V x t x
dt

−= −   (63)  

First, we consider the effect of the reduced reaction volume. As explained in the previous 

section, for the zero-th order reaction, we choose to generate substrate molecules at the rate 

1( )Ak N V , while for the second-order reaction, we choose the reaction rate constant 

as 1
2 ( )A effectivek N V − . With these settings, the homogeneous system dynamics within a 

reduced reaction volume is described by 

 

( )

1
1 2

11
1 2

( ) ( ) ( ) ( )

( ) ( ) 1 ( ) .

S
A A effective S E

A A crowdedness S E

dx t k N V k N V x t x
dt

k N V k N V p x t x

−

−−

= −

= − −
  (64)  

 By comparing the particle-based equations of the original volume case (63) and 

that of the reduced volume case (64), one can see that the reduced volume does not have 
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an effect on the zero-th order reaction, but that it does lead to an increase in the second-

order reaction, which can be formulated with the factor 

  ( ) 11 .volume crowdednessF p −−�   (65)  

 

Second, we consider the effect of reduced diffusion. Because we assume that the 

microscopic reaction rate for the second order reaction remains the same for both, diluted 

and crowded, situations, we investigate how a reduced diffusion rate in crowded media 

will affect the macroscopic reaction rate. 

 Given the macroscopic rate ( ) 11
2 ( ) 1macro A crowdednessk k N V p −−= − and the collision 

rate 4 ( )( )D S E S Ek r r D Dπ= + + , the microscopic reaction can be calculated as  

   

 
.D macro

micro
D macro

k kk
k k

=
−

  (66) 

 

With the reduced diffusion rate, the collision rate becomes 

_ _ _4 ( )( )D eff S E S eff E effk r r D Dπ= + + , and the effective macroscopic rate is 

_
_

_

D eff micro
macro eff

D eff micro

k k
k

k k
=

+
. Through algebraic manipulations, as detailed in (Klann, Lapin 

et al. 2011), one obtains 

 
_

_ _

1 .
1 1

macro eff macro

macro S E

D S eff E eff

k k
k D D

k D D

=
⎛ ⎞+

+ −⎜ ⎟⎜ ⎟+⎝ ⎠

 
(67)  

 

This equation means that the effective macroscopic rate will be reduced by a factor 
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_ _

1 .
1 1

diffusion

macro S E

D S eff E eff

F
k D D

k D D
⎛ ⎞+

+ −⎜ ⎟⎜ ⎟+⎝ ⎠

�  
(68)  

Therefore for a system in a fully available, reduced volume with reduced diffusion rate, 

the system dynamics becomes 

  1
1 2

( ) ( ) ( ) ( ) .S
A A volume diffusion S E

dx t k N V k N V F F x t x
dt

−= −   (69)  

 Third, we consider the reduced accessibility effect. Again, the reduced 

accessibility between reacting particles leads to a further reduction of the bimolecular 

reaction rate by an additional factor accessF , leading to 

  1
1 2

( ) ( ) ( ) ( ) .S
A A volume diffusion access S E

dx t k N V k N V F F F x t x
dt

−= −   (70)  

Similar to the previous section, instead of using statistical physics, we can determine the 

value of accessF through empirical simulation data. Namely, at steady state Eq. (70) 

becomes 

  1 _
1 20 ( ) ( ) ,st crowded

A A volume diffusion access S Ek N V k N V F F F x x−= −   (71)  

which implies 

  2
1

_
2

( ) .A
access st crowded

S E volume diffusion

k N VF
k x x F F

=   (72)  

 

As seen in Fig. 5, the reaction-diffusion dynamics in crowded media (blue curves) 

can be quite different from the predictions with Eq. (58) (black curves), which 

incorporates only the effects of a reduced reaction volume and a reduced diffusion rate. 

The influence of reduced accessibility between reacting molecules must be achieved 

through particle-based simulations and can be used as input in Eq.(59). The more 
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crowded the medium is, the less likely the reacting molecules will encounter one another, 

leading to smaller accessibility and thus a smaller effective bimolecular reaction rate. 

Moreover, as shown in Fig. 6, the quantification of crowding effects within the 

framework of Method 1 are very consistent with the corresponding results of Method 2, 

thereby supporting the validity of both quantification methods.  

 

 

Application to binding of dansylamide and carbonic anhydrase in a crowded medium 

Neff and coworkers (Neff 2010; Neff, Offord et al. 2011) investigated the adequacy of 

the mass action model, and of several generalizations, for reactions in artificial, crowded 

media. Two generalizations were studied (Bajzer, Huzak et al. 2008). The first 

generalization is based on generalized mass action (GMA) kinetics so that both, the 

association rate ak and the dissociation rate dk , allometrically depend on the reactant 

concentrations. The second generalized formulation was a fractal kinetic model where ak  

and dk  depend on time, according to a Zipf-Mandelbrot distribution. To validate the 

models, Neff and collaborators measured the time-resolved kinetic for the binding of 

dansylamide to carbonic anhydrase in solutions crowded by polyethylene glycol (PEG) 

and Ficoll. They found that only the GMA models are adequate in both dilute and 

different crowded environments and therefore are to be preferred over others alternatives.  

 The simulation methods developed here allow us to evaluate to what degree the 

kinetic parameters of both mass-action and GMA models, which were measured in dilute 

solution, can be extrapolated to crowded media. Specifically, we can simulate the mass-

action or GMA model with various diffusion rates in an unobstructed reaction volume 

and answer two questions. First, how does diffusion affect the system dynamics? And 

second, is reduced diffusion alone sufficient to create the crowding effects? To answer 

these questions, we create a virtual intracellular compartment with inert crowding agents 
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and use the parameters measured in dilute solution to run simulations in the crowded 

environment. The resulting simulation trajectories will be compared with experimental 

measurements for the crowded solution. The validity of the parameter extrapolability 

assumption will require consistency between the simulation results and the experimental 

data.       

 The binding of dansylamide ( 1S ) to carbonic anhydrase ( 2S ) is represented by the 

following reaction scheme, where 3S is an intermediate and 4S  is the final product: 

 

1

2
1 2 3 4

a

d

k k

k k
S S S S⎯⎯→ ⎯⎯→+ ←⎯⎯ ←⎯⎯

 

 

Neff et al. found that the following GMA model best fits the experimental data, 

which were obtained for both dilute and crowded solutions. 

    [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

3 1 2

3 1 2

1 2 3
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( ) ( ) ( ) ,
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( ) ( ) ( ) ,

( )
( ) ( ) ( ) ( ) ( ) ,

( )
( ) ( ) ,

f f f
d a

f f f
d a

f f f
a d

d X t
k X t k X t X t

dt
d X t

k X t k X t X t
dt

d X t
k X t X t k X t k X t k X t

dt
d X t

k X t k X t
dt

⎧
= −⎪

⎪
⎪

= −⎪⎪
⎨
⎪ = − − +⎪
⎪
⎪ = −⎪⎩

  (73) 

The kinetic parameters are given in Table 2. The corresponding diffusion-controlled 

reaction version of Eq. (73) is 
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⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ = −
⎩

  (74)  

 

where _effective particlek is defined in (42) and _ ( )d particlek t  in (21). Comparative simulation 

results are shown in Fig. 7. 

It is surprising that the GMA model is not affected by a wide range in the degree 

of crowding; the stochastic simulation of the GMA models with moderate (Fig. 8a) to 

high (Fig. 8b) initial reactant concentrations is consistent with the reaction-only ODEs. In 

order to examine whether both, the mass action model and the GMA model, have this 

property in general, we run simulations with the mass action model and the GMA model, 

simulating an increased bimolecular reaction rate, knowing that only the bimolecular 

reaction rate is affected by the accessibility effect, but not the dissociation rate. 

Specifically, we quantify this robustness property by defining  

 

_ _

_

relative error Stoch st ODE st

ODE st

CA CA
CA

−
� , 

where ( )_ _Stoch st ODE stCA CA is the steady-state value of carbonic anhydrase obtained by 

stochastic simulation (ODE prediction). The more robust the model is, the smaller the 

relative error it will render. As shown in Fig. 9, if the bimolecular reaction rate of the 

mass action models and the GMA models is enhanced by 10, 50, 100, 200 and 300 fold, 

we find: 1) Higher association rates lead to more pronounced relative errors. 2) The 

higher crowdedness leads to a larger relative error. 3) The mass action model is more 



 227

sensitive than the GMA model in responding to the crowding effects. In contrast, for low 

association rates, neither the mass action model nor the GMA model is significantly 

affected by crowdedness over a wide range of values. Knowing that the reduced volume 

effect enhances the reaction rate, while effects of reduced diffusion and reduced 

accessibility reduce the reaction rate, this phenomena of robust reaction rates in crowded 

media seems to imply that there is compensation between the counteracting effects, and 

that the model in GMA format has stronger capacity than the mass action one to 

capitalize on this compensation. 

 

 

Further stochastic simulations (Figure 10, upper panel) show that the dynamics of 

the dilute GMA model is not significantly changed by crowding within a wide range of 

values ( 0,0.1,0.2,0.3,0.4,0.5,0.6.crowdednessp = ). Moreover, the stochastic simulations 

match well with the experimental measurements of the reaction dynamics under the PEG-

6000 100 g/L solution (Figure 10, lower panel). One should note that the parameter 

values for the stochastic simulation cannot be directly extrapolated to other 

concentrations of PEG-6000, and while the unadjusted simulation results differ 

noticeably from data for other concentrations (results not shown), they could be adjusted 

to match the different situation. By contrast, the stochastic simulation and the GMA 

model are consistent with each other over a wide range of situations (not shown here, but 

demonstrated before with generic reactions). 

 

 

Conclusions 

The steady-state and transient kinetics of biochemical reactions are typically studied in a 

dilute solution that contains only reactants, products and buffers. In such studies, mass 
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action kinetic models are used to characterize the progress of a reaction over time. In 

contrast to this idealized set-up, intracellular compartments are crowded by 

macromolecules, organelles, and other structures, which reduce diffusion, restrict the 

reaction space and impose nonspecific volume exclusion effects. In spite of these 

variances from the idealized situation, binding reactions and enzymatic kinetics have 

been assumed to proceed as in aqueous solutions, and the kinetic parameters determined 

in vitro have often been presumed to be representative of intracellular systems. In this 

study, we analyzed this presumption and evaluated it computationally and in comparison 

to pertinent experimental data.  

To analyze the various effects of stochasticity and crowding, we proposed two 

conceptually distinct, particle-based methods for the simulation of diffusion-controlled 

reactions in which the reaction rates depend on the reactant concentrations. In the first 

method, the ODEs are designed to capture the microscopic reaction mechanism under the 

assumption that the diffusion rate is high enough to be ignored. In this case, the 

microscopic reaction mechanism remains the same for different diffusion rates and 

crowding environments. In the second method, the ODEs are assumed to reflect the 

combined effects of both reaction and diffusion. If the diffusion rate can be measured, the 

microscopic reaction mechanism in this method can be traced back according to the 

theory of Smoluchowski (Smoluchowski 1917; Berg and von Hippel 1985). The two 

conceptually different approaches proposed here lead to different consequences. The first 

method can be used directly to elucidate various spatial effects, such as different 

diffusion rates, the effective reaction volume, and the accessibility between reacting 

particles. The second method can also be used to probe these effects, but only after the 

microscopic reaction mechanism has first been calculated for a homogenous system.   

In the past, Method 1 had been used for the mass action kinetics (Pogson, 

Smallwood et al. 2006). However, diffusion had not been considered during validation, 

which led to the impression that the method is inaccurate for reactions where slow 
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diffusion significantly affects the system dynamics (Klann, Lapin et al. 2011). Our results 

indicate that consistency between the diffusion-controlled reaction ODEs and the 

stochastic simulations can actually be obtained, if the slow diffusion is modeled as a 

Brownian process. The implementation of this strategy in Method 1 was shown to be 

valid and accurate for a range of diffusion-reaction systems. Moreover, the particle-based 

nature of Method 1 renders this strategy applicable to heterogeneous systems, for 

instance, in an agent-based modeling framework; details will be discussed in a future 

publication.  

 Beyond assessing the performance of the proposed methods with various 

diffusion rates in unobstructed media, we formulated and implemented concepts for 

applying the same methods to diffusion-reaction systems in crowded media. As one 

results, we quantified the effects of crowding under the two methodological frameworks. 

Specifically, the crowding effects can be dissected into three contributing factors, namely 

a reduced reaction effect, a reduced diffusion effect, and a reduced accessibility effect. 

The first of these enhances the reaction rate, whereas the other two slow down the 

reaction. Our numerical assessments demonstrate that the quantification of crowding is 

consistent between the two frameworks, thereby supporting the validity of both.  

The utility of the two simulation strategies was demonstrated with representative 

reaction schemes and with an application to experimental data characterizing the binding 

of dansylamide and carbonic anhydrase in crowded media. Surprisingly, the GMA 

models (in both dilute and sucrose solution) turned out to be very robust to a wide range 

of diffusion rates and different degrees of crowdedness. Specifically, when the diffusion 

rate was varied from 0.01 to 5 or crowding was varied from 0 to 0.4, the stochastic 

simulation of the GMA models was shown to be consistent with the reaction-only ODEs.  

In order to exam whether the GMA model possesses this property in general, we ran 

simulations with increased bimolecular reaction rates, arguing that only the association 

reaction is affected by the accessibility effect. Indeed, when the association rate in the 
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GMA model was increased from 1 to 10, 50, 100, 200 or 300, the GMA model with a 

correspondingly scaled-up association rate produces results that are not significantly 

affected by crowding. In contrast, the traditional mass action model with a scaled-up 

association rate turned out to be significantly affected by high degrees of crowding (such 

as 0.3, 0.4). These comparative results imply that the counteracting effects of crowding 

compensate each other in a fashion from which the GMA format, but not the mass action 

format, benefits.  
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Table 6.1: Numerical values of parameters used in Fig.6 

 

Method 1 crowdednessP  

 0 0.12 0.24 0.48 0.60 

effD   0.9998     0.6318     0.4001     0.2532      0.1594 

volumeF  1 1.1364 1.3158 1.9231 2.5 

diffusionF   1.0000     0.9299     0.8375      0.7238     0.5944 

accessF   1.0144     0.9170     0.8323      0.6019      0.5040 

volume diffusion accessF F F  1.0143 0.96896 0.91719 0.83774 0.74889 

 

 

Method 2 crowdednessP  

 0 0.12 0.24 0.48 0.60 

effD   0.9998     0.6316     0.3999     0.2530      0.1595 

volumeF  1 1.1364 1.3158 1.9231 2.5 

diffusionF  1.0000     0.9202     0.8176     0.6950     0.5608 

accessF  0.9898     0.9088     0.8179     0.6040     0.5094 

volume diffusion accessF F F  0.98981 0.95029 0.8799 0.80723 0.71425 
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Table 6.2: Kinetic parameters obtained by weighted least-squares fitting of the GMA 

model in Eq. (73) for crowded and non-crowded media (adapted from (Neff 2010)). Units 

for 1k  and 2k  are 1s− . Units for  ak  and dk  are ( ) 1 21 1f fM sμ − − − and ( ) 31 1fM sμ − − , 

respectively. 

 

 Dilute 

(Mass 

action) 

Dilute 

(GMA) 

Sucrose Ficoll-400 PEG-6000 

100g/L        150g/L 100g/L        150g/L 

1k  19.5 0.0001 2.61 111           226 0.3000 0.0100 

2k  0.21 0.2200 0.7100 12.3 26.100 0.9300 0.3600 

1f  1 0.9400 0.6500 0.9500 0.9950 0.8200 0.8100 

2f  1 1 0.74 1.04 1.07 0.8800 0.9900 

3f  1 0.94 0.29 0.22 0.27 1.1500 0.8100 

ak  1.12 0.2870 1.3444 0.1535 0.0775 0.2993 0.1109 

dk  45.9 0.2296 0.6667 9.4602 8.324 0.1911 0.4337 
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Figure 6.1. Spatial stochastic simulations of a homogeneous diffusion-reaction system. 

The results in the upper panel are generated by Algorithm 1: The diffusion-controlled 

reactions of Eq. (46) (red lines) predict quite accurately the time trajectories of 2S , which 

were computed with spatial stochastic simulations using Algorithm 1. By contrast, the 

trajectories obtained with the diffusion-controlled reaction Eq. (46) (black lines) are 

significantly different from the results of the particle-based reaction-only Eq.(45) at low 

diffusion rates; the former converge to the latter as D ⎯⎯→∞ . The results in the lower 

panel are generated with Algorithm 2: The time trajectories of 2S , generated through 

spatial stochastic simulations using Algorithm 2, are consistent with the predictions of 

Eq. (45) (black lines) for all diffusion rates. Heavy blue center lines: mean of 10 spatial 
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stochastic simulations; thinner blue lines framing the mean: standard deviations around 

the mean. Diffusion rates used in the panels from left to right are: 

2 10.16,0.32,1.6,3.2D m sμ −= . Other parameters are 

1(0) 602,x = 2 (0) 1204,x = 3(0) 0,x = ( ) 1 21 150 ,f f
ak M sμ − − −=  

1
1 2 15 ,c c Msμ −= = 1 1.25,f = 2 1.2,f =  0.02collisionr mμ=  and 31V mμ= . For the 

concentration-based GMA model (Eq. (45); top panel), the initial values are [X1] = 1, [X2] 

= 2, and [X3] = 0.5; for comparison with the stochastic simulations, the simulation results 

from this model are subsequently multiplied by the corresponding number of particles, 

602. The x-axis represents time in seconds; the y-axis represents the number of 2S  

molecules. 
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Figure 6.2. The dissociation reaction in Eq. (47) is concentration dependent, but 

diffusion independent. Consequently, the time trajectories of 2S , obtained with spatial 

stochastic simulations using Algorithm 1 or 2 are always consistent with the prediction 

by Eq. (48) (black lines), independent of the diffusion rate. Blue center lines: Mean of 10 

spatial stochastic simulations; blue lines framing the mean: standard deviations around 

the mean. The diffusion rates from left to right are: 2 10.2,0.4,2,4D m sμ −= .Other 

parameters are 1(0) 0,x =  2 (0) 0,x =  3 (0) 301,x =  

( ) 31 125 ,f
dk M sμ − −= 1

3 15 ,c Msμ −= 31 ,V mμ= 3 0.85f = for the upper panels and 

3 1.15f =  for the lower panels. For the concentration-based GMA model (Eq. (49); top 

panel), the initial values are [X1] = 0, [X2] = 0, and [X3] = 0.5; for comparison with the 

stochastic simulations, the simulation results from this model are subsequently multiplied 

by the corresponding number of particles, 602. The x-axis represents time in seconds; the 

y-axis represents the number of 3S  molecules. 
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Figure 6.3. Comparison of spatial stochastic simulations of a homogeneous, reversible 

diffusion-reaction system with predictions from two ODEs models. The diffusion-

controlled reaction Eq. (50) (red lines) rather precisely predict the averaged time 

trajectories of 2S , which were obtained with spatial stochastic simulations using 

Algorithm 1. By contrast, the trajectories obtained with the diffusion-controlled reaction 
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in Eq. (50) are significantly different from those of the particle-based reaction-only Eq. 

(49) (black lines), if the diffusion rate is low; the former converge to the latter as 

D ⎯⎯→∞ . Blue center lines: Mean of 10 spatial stochastic simulations; blue lines 

framing the mean: standard deviations around the mean. Results from Algorithm 2 are 

consistent with the predictions of the particle-based reaction-only Eq. (49) (black lines). 

Heavy blue center lines: mean of 10 spatial stochastic simulations; thinner blue lines 

framing the mean: standard deviations around the mean. Diffusion rates from left to right 

are: 2 10.16,0.32,1.6,3.2D m sμ −= . Other parameters are 1(0) 602,x = 2 (0) 1204,x =  

3 (0) 301,x = ( ) 1 21 120 ,f f
ak M sμ − − −=  ( ) 31 110 ,f

dk M sμ − −= 0.02 ,ijr mμ=  0.02 ,collisionr mμ=  

1 1.25,f =  2 1.2,f =  3 0.85f = and 31V mμ= . For the concentration-based GMA model 

(Eq. (49); top panel), the initial values are [X1] = 0, [X2] = 0, and [X3] = 0.5; for 

comparison with the stochastic simulations, the simulation results from this model are 

subsequently multiplied by the corresponding number of particles, 602. 
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Figure 6.4. Creating a virtual, crowded medium by filling a reaction volume with inert 

blocks. Left: 1%crowdednessp = ; right: 10%crowdednessp = .   
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Figure 6.5. Enzymatic reaction-diffusion system in crowded media. The upper panels are 

generated with Method 1 (using Algorithm 1.2). Means (blue) and standard deviations 

(grey) are the results of 10 simulations. The black line shows the prediction of Eq. (58), 

which incorporates the effects of reduced reaction volume and reduced diffusion rate. 

Red dashed line (essentially merged with the red line): The average steady state value stS  

which is calculated from 10 stochastic simulations by method 1. Red line: prediction of 

Eq.(59), which incorporates the effects of reduced reaction volume, reduced diffusion 

rate and reduced accessibility. The lower panels are generated with Method 2. Means 
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(blue) and standard deviations (grey) are from 10 simulations. Black line: prediction with 

ODE equation (69), which incorporates the effects of a reduced reaction volume and 

reduced diffusion rate. Again, the average steady-state value stS is calculated from 10 

stochastic simulations with Method 2. Red solid line: prediction with Eq.(70), which 

incorporates the effects of reduced reaction volume, reduced diffusion rate and reduced 

accessibility. Simulations shown from the 1st to 5th columns use 

0,0.12,0.24,0.48 and 0.60,crowdednessP =  respectively. The other parameters are  

( ) 11
1 245 , 45 , (0) 310, 1204,S Ek Ms k Ms x xμ μ −−= = = =  2 11 ,S ED D m sμ −= =  

0.02collisionR mμ=  and 31V mμ= . The x-axis represents time in seconds; the y-axis 

represents the number of substrate molecules. 
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Figure 6.6. Detailed quantification of crowding effects: red lines are calculated with 

Method 1 and blue lines with Method 2. The x-axis represents the value of crowding 

0,0.12,0.24,0.48 and 0.60crowdednessp = , while the y-axis represents the values of 

, , ,  and effective volume diffusion access volume diffusion accessD F F F F F F  from the 1st  to 5th columns of Table 

1, respectively. Both axes are unit-less.  
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Figure 6.7. The two GMA models (for dilute and sucrose media) are not affected 

significantly by the diffusion rate. The upper (lower) panels display the spatial stochastic 

simulation of the Dilute GMA model (Sucrose GMA model) under vastly different 

diffusion rates. With the given parameters, the ODE predictions of the reaction-only Eq. 
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(73) (black solid lines) are almost identical to the diffusion-controlled reaction model in 

Eq. (74) (dashed black lines) for a wide range of diffusion rates. Moreover, the spatial 

stochastic simulations (colored lines) of a homogeneous diffusion-reaction system are 

rather precisely predicted by Eq. (73) (black solid lines) or Eq. (74) (dashed black lines). 

Green solid line: dansylamide ( 1S ); red: carbonic anhydrase ( 2S ); blue: DA-CA 

intermediate ( 3S ); cyan: DA-CA product ( 4S ).  The diffusion rates used in the panels 

from left to right are: 2 10.01,0.1,1,5D m sμ −= . The other parameters are shown in the 2nd 

and 3rd columns of Table 2; remaining parameter values are 1(0) 6023,x = 2 (0) 12046,x =   

3 4(0) 1, (0) 1,x x= = 0.02 ,ijr mμ=  0.02collisionr mμ=  and 31V mμ= .  
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Figure 6.8a. The GMA models (for dilute conditions) are not affected significantly by a 

wide range of crowding parameters. The upper (lower) panels display results of 

simulations with Method 1 (Method 2) of the Dilute GMA model under different degrees 

of crowding. The spatial stochastic simulations (colored lines) of a homogeneous 

diffusion-reaction system are precisely predicted by reaction-only Eq. (73) (black solid 
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lines) but not the diffusion-reaction Eq. (74) (dashed black lines). Red: carbonic 

anhydrase ( 2S ); blue: the sum of DA-CA intermediate ( 3S ) and DA-CA product ( 4S ).  

The crowding rates used in the panels from left to right are: 

0,0.1,0.2,0.3,0.4crowdednessp = . The other parameters are shown at the 2nd and 3rd columns 

of Table 1 and 1 2 3 4(0) 602, (0) 602, (0) 1, (0) 1,x x x x= = = =   0.02 ,ijr mμ=  

0.02collisionr mμ=  and 31V mμ= .  
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Figure 6.8b. Two GMA models (for dilute and sucrose conditions) are not affected 

significantly by a wide range of crowding parameters. The upper (lower) panels display 

results of simulations with Method 1 (Method 2) of the Dilute GMA model (Sucrose 

GMA model) under different degrees of crowding. The spatial stochastic simulations 

(colored lines) of a homogeneous diffusion-reaction system are precisely predicted by Eq. 
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(73) (black solid lines) but not the diffusion-reaction Eq. (74) (dashed black lines). Red: 

carbonic anhydrase ( 2S ); blue: the sum of DA-CA intermediate ( 3S ) and DA-CA product 

( 4S ).  The crowding rates used in the panels from left to right are: 

0,0.1,0.2,0.3,0.4crowdednessp = . The other parameters are shown at the 2nd and 3rd columns 

of Table 1 and 1 2 3 4(0) 6023, (0) 6023, (0) 1, (0) 1,x x x x= = = =   0.02 ,ijr mμ=  

0.02collisionr mμ=  and 31V mμ= .  
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Figure 6.9. Comparison of diluted mass action models (left panel) and diluted GMA 

models (right panel) with escalated association rates under different degrees of crowding. 

The simulation results with different colors represent association reaction rates that are 

increased 1 (red), 10 (dark green), 50 (blue), 100 (black), 200 (dark cyan) and 300 

(magenta) fold, respectively.   Other parameters are shown in the 1st and 2nd columns of 

Table 2; furthermore:  1 2 3 4(0) 6023, (0) 6023, (0) 1, (0) 1,x x x x= = = =   0.02 ,ijr mμ=  

0.02collisionr mμ=  and 31V mμ= . The x-axis indicates different crowding rates: 

0,0.1,0.2,0.3,0.4crowdednessp = . The y-axis exhibits the relative error in each simulation. 

Both axes are unitless. 
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Figure 6.10. Upper panel: the GMA model for dilute conditions is not affected 

significantly by a wide range of crowding parameters. Lower panel: stochastic 

simulations with the GMA model for dilute conditions under a wide range of crowding 

parameters are consistent with the experimental measurements in PEG-6000 100 g/L 

solution (solid lines). Dashed lines show solutions with Eq. (73). Red: carbonic 

anhydrase ( 2S ); blue: the sum of DA-CA intermediate ( 3S ) and DA-CA product ( 4S ).  

The crowding rates used in the panels from left to right are: 

0,0.1,0.2,0.3,0.4,0.5,0.6crowdednessp = . The other parameters are shown at the 2nd column 

of Table 1 and 1 2 3 4(0) 6023, (0) 6023, (0) 1, (0) 1,x x x x= = = =   0.02 ,ijr mμ=  

0.02collisionr mμ=  and 31V mμ= . 
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CHAPTER 7  

SUMMARY, CONCLUSIONS, AND FUTURE WORK 

 

Extending Biochemical Systems Theory to hybrid modeling frameworks 

Several aspects of biological systems are difficult to capture with a model 

consisting of ordinary differential equations (ODEs). They include stochasticity, switches 

and delays. In the past, these aspects had to be addressed with different methodological 

approaches and different software packages, or it was necessary to develop new software 

from scratch. As a consequence, the synergisms and interrelationships between combined 

effects resulting from such aspects were seldom investigated, even though they are 

known to occur in reality with some frequency and one should expect that they may be of 

importance. By integrating Biochemical Systems Theory (BST) and Hybrid Functional 

Petri Nets (HFPN), I have developed a hybrid method that permits the simulation of 

biological systems containing different types of continuous and non-continuous effects, 

including regulation, switches, randomness, and various delays. The accuracy, efficiency 

and advantages of this hybrid approach were demonstrated with various examples, 

including representative metabolic systems, gene regulation (Chapter 2), a toggle switch 

(Chapter 3), and dopamine-based signal transmission (Chapter 4). 

Particular attention was paid to kinetic systems that consist of few reactants and 

therefore have stochastic characteristics. These systems are not necessarily modeled 

validly with continuum representations and ODEs, because the required assumption of a 

well mixed, homogeneous milieu is violated. The standard alternative is Gillespie’s 

stochastic simulation algorithm (SSA) for chemical reactions. This algorithm admits 

three kinds of elementary processes, namely, mass action reactions of 0th, 1st or 2nd order. 

All other types of reaction processes, for instance those containing non-integer kinetic 

orders or following other types of kinetic laws, are assumed to be convertible to one of 
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the three elementary kinds, to which SSA can then be validly applied. However, the 

conversion to elementary reactions is often difficult, if not impossible. Within 

deterministic contexts, a strategy of model reduction is often employed. Such a reduction 

simplifies the actual system of reactions by merging or approximating intermediate steps 

and omitting reactants such as transient complexes, and it would be valuable to adopt a 

similar reduction strategy to stochastic modeling. Indeed, efforts have been devoted to 

manipulating the chemical master equation (CME) in order to achieve a proper 

propensity function for a reduced stochastic system. However, manipulations of CME are 

almost always complicated, and successes have been limited to relative simple cases. To 

address these challenges, I proposed in Chapter 5 a rather general strategy for converting 

a deterministic process model into a corresponding stochastic model and characterized 

the mathematical connections between the two. The deterministic framework was 

assumed to be a generalized mass action system and the stochastic analogue was in the 

format of the chemical master equation. The analysis identified situations: where a direct 

conversion is valid; where internal noise affecting the system needs to be taken into 

account; and where the propensity function must be mathematically adjusted. The 

conversion from deterministic to stochastic models was illustrated with several 

representative examples, including reversible biochemical reactions with feedback 

controls, Michaelis-Menten enzyme kinetics, a genetic regulatory motif, and stochastic 

focusing. The analysis demonstrated that the construction of a stochastic model for a 

biochemical network requires the utilization of information associated with an equation-

based model. Furthermore, the proposed conversion strategy guides the model design 

process and ensures a valid transition between deterministic and stochastic models.   

 

In addition to discrete and stochastic effects, biochemical processes in vivo almost 

always occur in heterogeneous, and often crowded, milieus. Nonetheless, models for such 

scenarios often use mass action kinetics, which, in a strict sense, are clearly limited to 
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biochemical reactions in dilute solution, where reactants freely diffuse and react in an 

unobstructed space. Indeed it had been shown that modeling diffusion-reaction kinetics in 

crowded environments, such as the cytoplasm, requires fractal-like ODE models. For 

instance, theoretical considerations had suggested generalized mass action systems as 

suitable formulations, and this format was indeed successfully validated in an 

experimental system [1, 2]. Chapter 6 discussed these situations and established two 

novel, particle-based methods to simulate biochemical diffusion-reaction systems within 

crowded environments. I distinguished two conceptually different situations. In the first, 

the ODEs capture a microscopic “reaction-only” mechanism, while diffusion is modeled 

separately. In the second case, the ODEs model the combined effects of both reaction and 

diffusion.  This distinction led to two simulation methods that both effectively simulate 

and quantify crowding effects, including reduced reaction volumes, reduced diffusion 

rates, and reduced accessibility between potentially reacting particles. The proposed 

methods successfully account for fractal-like kinetics, where the reaction rate depends on 

the local concentrations of the molecules undergoing the reaction. Rooted in an agent 

based modeling framework, this aspect of the methods offers the capacity to address 

sophisticated intracellular spatial effects, such as macromolecular crowding, active 

transport along cytoskeleton structures, and reactions on heterogeneous surfaces, as well 

as in porous media. 

Taken together, I have in this dissertation successfully developed theoretical 

advances, simulation methods, and algorithmic implementations that extend the 

deterministic continuous framework of Biochemical Systems Theory toward effects that 

are a priori difficult to model, namely different types of delays, stochasticity, 

discreteness, and spatial effects. These advances substantially extend the modeling 

repertoire for biological systems, which are by nature hybrid and span different scales in 

time, space, and organization. 
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Future developments 

While this dissertation has described significant progress in the analysis of hybrid 

systems, further developments are needed and foreseeable in several areas.  

 

1. Mesoscopic methods for the simulation of reaction-diffusion systems  

The two methods developed in Chapter 6 use agent-based technique to treat every 

molecule as a distinct computational object and trace its position in a continuous space or 

on a discrete lattice over time. Focusing on this molecular level of detail, unsurprisingly, 

renders these methods computationally very expensive. Since the diffusion and reaction 

of each particle occur simultaneously, one may be able to solve this challenge by using 

parallel computational techniques such as GPU computing [3].  

Another option might be the use of a mesoscopic method which treats molecules 

individually yet does not trace their exact location within subspaces of the entire volume. 

The computational cost for mesoscopic (microscopic) method is proportional to the 

compartment (molecular) amount; when the total molecular amount is much bigger than 

the compartments amount, the mesoscopic method is usually more efficient than the 

microscopic one. Among the existing mesoscopic methods, spatial Gillespie approaches 

usually divide the total reaction space evenly into identical subvolumes, and Gillespie-

type algorithms are applied to simulate each subspace [4-7]. This strategy tends to reduce 

the total simulation time. To satisfy the homogeneity requirement of Gillespie’s 

algorithms, the size of each subvolume needs to be chosen small enough so that every 

reactive species can be regarded as uniformly distributed. This is achieved by ensuring 

that the frequency of molecular diffusion events between adjacent subvolumes is much 

higher than the reaction frequency within each subvolume. Thus, at each time step, each 

molecule, represented as a point particle, either reacts within its current subvolume or 
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diffuses to an adjacent subvolume. The reaction probability is determined by a propensity 

function, while the diffusion probability is 2D l , where D is diffusion rate and l  is the 

subvolume side length.   

Simulation efficiency could possibly also be improved by the use of a reaction 

propensity based on a reduced model. As shown in Chapter 5, the simulation of a full 

system including many reactants and reaction channels is combinatorially expensive. To 

counter the combinatorial explosion, the full system may be reduced by approximating, 

merging, or omitting intermediate reaction steps and reactants, resulting in a reduced 

phenomenological model. The propensity function of the reduced model can typically be 

computed by using power-law functions of local reactant concentrations, which can 

naturally be measured within each subvolume. An example of such a strategy was shown 

in Chapter 5, where the forward reaction was inhibited by its reaction product and the 

reverse reaction was accelerated by the feedback signal. These controlled effects can be 

quantified in a power-law function of the local concentrations of the contributing species. 

Therefore, a propensity function based on a reduced model may be used in the 

mesoscopic method to achieve low computational cost.  

However, there are challenges for mesoscopic, subvolume-based methods. The 

first challenge is the difficulty to account for crowding effects. To the best of my 

knowledge, all mesoscopic methods developed so far treat molecules as point particles, 

and crowding effects on either reaction or diffusion have not been effectively simulated. 

This challenge could be solved by the technique developed in Chapter 6, which shows 

that the crowding effects can be quantified for a homogeneous (sub-) system. Therefore, 

when the crowding effects are quantified, one could use mesoscopic methods to simulate 

the reaction-diffusion dynamics in a crowded environment with relative low 

computational cost.  

The second challenge is that the subvolume-based approach can give unrealistic 

results as the spatial discretization approaches a microscopic length scale [8, 9]. The 
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solutions to this challenge through propensity function adjustment have been limited to 

the case of bimolecular reactions abiding to the mass action law. Therefore, a future 

development could be to find a corresponding solution for non-mass action kinetics, such 

as generalized mass action representations. Chapter 6 distinguishes two interpretations of 

ODE-based models: In the first, the ODEs capture a microscopic “reaction-only” 

mechanism, while diffusion is modeled separately. In the second case, the ODEs model 

the combined effects of both reaction and diffusion.  Because mesoscopic methods allow 

reactions to occur only within each subvolume and diffusion to occur between 

neighboring subvolumes, they impose limits on the diffusion rate. This practice is 

different from the case of homogeneous reactions where reacting particles freely react 

with one another in the total reaction volume and the diffusion rate is assumed to be 

infinite. The conceptual clarification in Chapter 6 could provide clues on how the 

unrealistic effects arise from discretization, and the particle-based methods I developed 

could be taken as a starting point to design reaction propensity functions with adjustment 

to account for the limited diffusion effect. Indeed, the subvolume-based methods 

corresponding to the two particle-based methods in Chapter 6 are under active 

development.   

 

2. Moment-based approximation for reaction-diffusion systems with delays 

The simulation of a spatial stochastic model is usually more expensive than solving 

corresponding ODEs, thereby making equation-based modeling computationally 

appealing. However, it is clear that the use of ODEs for such systems is limited in 

validity. In some cases, stochastic systems or subsystems can be approximated by 

equation-based models. An instance of such practice can be seen in [10] where spatial 

information is approximated by distributed time-delays and thereby a heterogeneous 

diffusion-reaction model can be represented by a set of delay differential equations. 
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However, such approaches have limitations because they are usually based on the 

assumption that the molecular concentration is high and noise does not propagate along 

reaction cascades.  

When discreteness and stochastic effects cannot be ignored, the mean behavior 

represented by deterministic ODEs is insufficient to characterize the system dynamics, 

and (co-)variances as well as higher moments may need to be considered. Moment-based 

methods offer a promising approach for these challenges. Through solving the ODEs of 

moments (mean, covariance, third moments etc.), moment-based methods account for the 

effects of noise on the mean dynamics, thereby making it a closer approximation to 

multiple runs of a stochastic simulation than the mean-only ODEs. However, moment-

based methods are limited to Markov-like processes where the future states of a system 

are totally determined by its current state. As a consequence, these methods are not 

directly applicable to systems with delays where the future state of the system depends on 

both the current state and its history.  

Chapter 2 provides a technique by which a set of delay differential equations 

(DDEs) can be approximated by a set of ODEs with arbitrary accuracy. This 

computational technique makes it possible to approximate a delayed system by moment-

based methods. Through experience with numerous numerical cases, I detected several 

advantages of moment-based method for delayed systems. In particular, the assumption 

of a high molecular concentration is not always required and moment-based methods can 

be used as a tool to assess low copy number effects. Also moment-based methods can be 

used to characterize how noise propagates through a reaction cascade. Specific features 

of moment-based methods for stochastic reaction networks with delays are currently 

under active investigation.   
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3.  Moment-based parameter and structure estimation from time series data 

Biological time series data are usually quite noisy. Traditional methods for the estimation 

of parameters and the structure of a system usually require the smoothing of the time 

series data as the first step in order to obtain information regarding the change rate of the 

variables of interest [11]. However, the smoothing step can introduce non-negligible 

artificial error. Moreover, after the smoothing step, only the mean information is retained 

and other information is lost, for instance, regarding the covariance or moments with 

degree higher than two. A new paradigm which does not require data smoothing would 

have the potential to overcome these challenges: first, time series data are used to 

compute all the interesting moments; and second, the moments are used to recover 

network structure and parameters through techniques such as Bayesian inference [12]. 

The advantages of this new paradigm are: 1) it does not introduce artificial error during 

smoothing; 2) it uses all information available from the time series data and is therefore 

expected to recover more features of the system than smoothing methods; 3) it can be 

combined with other prior information as a tool to implement new means of model 

selection. Within the context of BST, the challenge is that the moment-based ODEs are 

usually not in power-law format, so that the parameter estimation could be more 

challenging than the traditional mean-only analogue.  
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Appendix A 

Derivation of the mean and variance of a power-law function of random variables 

The computation of the expectation of a function of random variables is based on Taylor 

expansion. Specifically, a Taylor series is used to approximate the first two moments of a 

function f of random variable X, given that f is at least twice differentiable and the 

moments of X are finite. The result is the following: 
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(A.1)  

Similarly, [ ] 2 2var ( ) '( ) .X Xf X f μ σ≈  (A.2)  

Here [ ]X E Xμ =  and [ ]2 2( ) var .X XE X Xσ μ⎡ ⎤= − =⎣ ⎦  

To compute the expectation of power-law functions, consider first the special 

case ( ) log( )f X X=   for X > 0. Here, 1'( )f X X −= and 2"( )  for 0f X X X−= − > . In the 

present context, the random number X represents the amount of a given molecular 

species, which is positive so that ( ) log( )f X X= is well defined.  By applying the above 

approximation technique to log(X), we have 
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 [ ] ( )21log( ) log( )
2X X XE X μ σ μ≈ −  (A.3)  

 [ ] ( )2var log( ) .X XX σ μ≈  (A.4)  

 

 

The generic power-law function of several random variables is given as
1

 ( )
sN

fs
s

s=

PL k X= ∏X . 

The same method as before can be used to estimate its mean PLμ and variance PLσ , which 

will emerge as functions of 2, s sμ σ and cov , ,i jX X⎡ ⎤⎣ ⎦  with , , 1, , ss i j N= … . 

 

Being a function of random variables, the function ( )PL X is itself a random variable. 

Therefore, we can apply the above approximation to ( )PL X :  

 [ ] ( )21log( ) log( )
2PL PL PLE PL μ σ μ≈ −  (A.5)  

 [ ] ( )2var log( ) .PL PLPL σ μ≈  (A.6)  

Taking the log of  ( )PL X we obtain 

( )
1

log ( ) log log
sN

s s
s=

PL k f X= +∑X , 

which allows us to consider the mean and variance of ( )log ( )PL X in log-space in the 

following fashion: 
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(A.8)  

By combining (A.5)-(A.8), we have 

 

1

exp cov log , log
s sN N

fs
PL s i j i j

i js=

k f f X Xμ μ
<

⎛ ⎞
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∑∏  (A.9)  

 2 2 .PL PLσ μ≈ Ω  (A.10)

Here, 2 2

1
2 cov log , log .

s sN N

s s s i j i j
s= i j

f f f X Xμ σ−

<

⎡ ⎤Ω = + ⎣ ⎦∑ ∑  

In order to see the functional relationship between 2,PL PLμ σ and , cov ,s ij i jX Xμ σ ⎡ ⎤⎣ ⎦� , 

one needs to express cov log , logi jX X⎡ ⎤⎣ ⎦  as a function of sμ and ijσ . Using one of two 

alternative treatments of cov log , logi jX X⎡ ⎤⎣ ⎦ , we obtain two results, as shown below. 
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1) The first alternative is the approximation of cov log , logi jX X⎡ ⎤⎣ ⎦  , based on Taylor 

linearization of log  at XX μ , which ignores higher-order terms (HOT(2)).  This 

strategy yields 

( )1 log log ( ) HOT(2) logX X X X XX X e Xμ μ μ μ μ−= + − + ≈ + . 

Thus, 

( )( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

log log

log log

log log log log

i j

i i i j j j

i j i j j j i i i i j j

X X

e X e X

e e e X e X X X

μ μ μ μ

μ μ μ μ μ μ μ μ

≈ + +

= + + +

 

and 

( ) ( ) ( ) ( ) ( )( )
log log

log log log log

log log cov , .

i j

i j i j i i j j

i j i i j j

E X X

e e e e E X X

X X

μ μ μ μ μ μ

μ μ μ μ

⎡ ⎤⎣ ⎦
⎡ ⎤= + + + ⎣ ⎦

⎡ ⎤= + ⎣ ⎦

 

To compute [ ] log logi jE X E X⎡ ⎤⎣ ⎦ , we make use of the earlier approximation 

[ ] ( )21log log :
2X X XE X μ σ μ≈ −  

[ ]

( ) ( )

( ) ( ) ( ) ( )

22

2 22 2

log log

1 1log log
2 2

1 1 1log log log log .
2 2 4

i j

i i i j j j

i j j i i i j j i i j j

E X E X

μ σ μ μ σ μ

μ μ μ σ μ μ σ μ σ μ σ μ

⎡ ⎤⎣ ⎦
⎛ ⎞⎛ ⎞≈ − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= − − +
 

Finally, 
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[ ]

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2

2 22 2

cov log , log

log log log log

log log cov ,

1 1 1log log log log
2 2 4

cov ,

1 1 1log( ) log( ) .
2 2 4

i j

i j i j

i j i i j j

i j j i i i j j i i j j

i i j j

i j j j i i i i j j

X X

E X X E X E X

X X

X X

μ μ μ μ

μ μ μ σ μ μ σ μ σ μ σ μ

μ μ

μ σ μ μ σ μ σ μ σ μ

⎡ ⎤⎣ ⎦
⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦

⎡ ⎤≈ + ⎣ ⎦

⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

⎡ ⎤= ⎣ ⎦

+ + −

 (A.11)

 

 

Substitution of this approximation in (A.9) and (A.10) yields 

 
( )2

11

1 1exp
2 2

s sN N
fs

PL s s s s
s=s=

k fμ μ σ μ
⎛ ⎞

≈ − + Ω⎜ ⎟
⎝ ⎠

∑∏  (A.12)

 2 2 ,PL PLσ μ≈ Ω  (A.13)

where  

( )

( ) ( ) ( ) ( )

2

1

2 22 2

2 {cov ,

1 1 1log( ) log( ) }.
2 2 4

s sN N

s s s i j i i j j
s= i j

i j j j i i i i j j

f f f X Xσ μ μ μ

μ σ μ μ σ μ σ μ σ μ

<

⎡ ⎤Ω ≈ + ⎣ ⎦

+ + −

∑ ∑

 

 

2) An alternative way to calculate cov log , logi jX X⎡ ⎤⎣ ⎦  is to assume that ( )1, , sX X…  is 

log-normally distributed (i.e., ( )1log , , log sX X…  is normally distributed). Using this 

assumption,  Law and Kelton  (Law and Kelton 2000) showed that 
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cov log , log log 1 .ij

i j
i j

X X
σ
μ μ

⎛ ⎞
⎡ ⎤ = +⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 (A.14)

 

By substituting this equation into (A.9) and (A.10), one obtains 

 

1

1
i j

s s
f f

N N
f ijs

PL s
s= i j i j

k
σ

μ μ
μ μ<

⎛ ⎞
≈ +⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏  (A.15)

 2 2 .PL PLσ μ≈ Ω  (A.16)

Here, 
2

1
2 log 1 .

s sN N
ijs

s i j
s= i js i j

f f f
σσ

μ μ μ<

⎛ ⎞⎛ ⎞
Ω = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑  

 

The first set of expressions for PLμ and 2
PLσ  (A.9 and A.10) provides an easy numerical 

implementation if data for the computation of cov log , logi jX X⎡ ⎤⎣ ⎦  are available. The 

second set of expressions for PLμ  and 2
PLσ  (A.11 and A.13) gives a clear picture of how 

they are related to , s sμ σ and ijσ ; however, the price for this insight is the inaccuracy 

introduced during the approximation. The third set (A.15 and A.16) also provides a 

functional form of PLμ  and 2
PLσ on ( , , )s s ijμ σ σ , but requires the assumption of log- 

normality.  

 

Reference 

1. Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis. 3 ed. 2000, 
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Appendix B 

Computation of approximate mean and covariance for a generic propensity function 

to be used in stochastic simulations 

Following a procedure similar to one proposed in  (Lee, Kim et al. 2009), we derive an 

ODE system of the mean and covariance of the number of molecules. For a chemical 

reaction system with rN  reactions and sN  species, the governing equation is the chemical 

master equation (CME; Equation (21)). With simplified notation  0 0( , ) ( , | , ),P t P t tx x x�  

CME becomes 

 
[ ]

1

( , ) ( ) ( , ) ( ) ( , ) .
rN

r r r r
r

P t P t P t
t

α α
=

∂
= − − −

∂ ∑x x v x v x x  (B.1)  

By multiplying (B.1) with sx and then summing over all the possible states x , we obtain 

 
[ ]

1

( , ) ( ) ( , ) ( ) ( , ) .
rN

s s r r r r
r

P tx x P t P t
t

α α
=

∂
= − − −

∂∑ ∑∑
x x

x x v x v x x  (B.2)  

Because the sum in the first term of the right-hand side covers all x, we are allowed to 

renumber terms and to replace r− →x v x  , which yields 

 [ ]

[ ]

,
1

,
1

,
1

( ) ( ) ( , ) ( ) ( , )

( ) ( , )

( ) ,

r

r

r

N
s

s r s r r s r
r
N

r s r r
r
N

r s r
r

E X
x P t x P t

t

v P t

v E

α α

α

α

=

=

=

∂
⎡ ⎤= + −⎣ ⎦∂

⎡ ⎤= ⎣ ⎦

=

∑∑

∑∑

∑

x

x

v x x x x

x x

X

 (B.3)  

where ,r sv is the sth component of vector rv .  
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In order to obtain the second central moment, we denote [ ]( ) ( )s st E X tμ = , multiply 

eqn.(A.1) by ( )( )i i j jx xμ μ− − , and sum over all possible states. The result is  

 

[ ]
1

( , )( )( )

( )( ) ( ) ( , ) ( ) ( , ) .
r

i i j j

N

i i j j r r r r
r

P tx x
t

x x P t P t

μ μ

μ μ α α
=

∂
− −

∂

= − − − − −

∑

∑∑
x

x

x

x v x v x x
 (B.4)  

Again transforming the first term of the left-hand side with the replacement r− →x v x  

we obtain 

 

[ ]

, ,
1

, , , ,
1

, , , ,

( )( )

[( )( ) ( ) ( , )

( )( ) ( ) ( , )]

[ ( ) ( ) ] ( ) ( , )
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r

i i j j
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i r i i j r j j r
r
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r
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=
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∂
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∑∑

x

x

x x

x x

x x

X X [ ]{ }
1

( ) ,
rN

r=
∑ X

 (B.5) 

where , 1, , si j N= … . With these results, we can now approximate the propensity function 

( )rα x  using a second-order Taylor expansion at =X μ , which leads to the following 

result: 

 2

1 , 1

( ) ( )1( ) ( ) ( ) ( )( ).
2

s sN N
r r

r r s s m m n n
s m ns m n

X X X
X X X

α αα α μ μ μ
= =

∂ ∂
≈ + − + − −

∂ ∂ ∂∑ ∑μ μx μ  (B.6) 

The approximation becomes exact when ( )rα x  is a linear or quadratic function, which is 

the case for elementary reactions. Furthermore, its expectation is 
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[ ] [ ]

2

, 1

( )1( ) ( ) ( )( ) .
2

sN
r

r r m m n n
m n m n

E E X X
X X
αα α μ μ

=

∂
≈ + − −

∂ ∂∑ μX μ  (B.7)  

Similarly, 
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[ ]

[ ]

1

2

, 1
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( )1 ( )( )( ) .
2

s

s

i i r

N
r

i i s s
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r

i i m m n n
m n m n

E X

E X X
X

E X X X
X X

μ α

α μ μ

α μ μ μ

=

=

−

∂
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∂

∂
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∂ ∂

∑

∑

X

μ
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(B.8)  

Substituting eqns. (B.5) and (B.6) into (B.1) and (B.3), we obtain 
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2

,
1 , 1
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2

sr
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NN
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 (B.9)  

and 

 

[ ]

,
1 1

2

,
, 1

,
1

2

,
, 1

( )( )

( ){ ( )( )

( )1 ( )( )( )
2

( ) ( )( )

( )1 ( )( )
2

sr

s

s

s

i i j j

NN
r

r i j j s s
r s s

N
r

r i j j m m n n
m n m n

N
r

r j i i s s
s s

N
r

r j i i m m
m n m n

E X X
t

v E X X
X

v E X X X
X X

v E X X
X

v E X X
X X

μ μ

α μ μ

α μ μ μ

α μ μ

α μ μ

= =

=

=

=

⎡ ⎤∂ − −⎣ ⎦
∂
∂ ⎡ ⎤= − −⎣ ⎦∂

∂ ⎡ ⎤+ − − −⎣ ⎦∂ ∂

∂
+ − −

∂

∂
+ − −

∂ ∂

∑ ∑

∑

∑

∑

μ

μ

μ

μ [ ]

[ ]
2

, ,
, 1

( )

( )1( ) ( )( ) }.
2

s

n n

N
r

r i r j r m m n n
m n m n

X

v v E X X
X X

μ

αα μ μ
=

−

⎡ ⎤∂
+ + − −⎢ ⎥∂ ∂⎣ ⎦

∑ μμ

 (B.10)
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Finally, we denote ( )( )ij i i j jE X Xσ μ μ⎡ ⎤= − −⎣ ⎦  
and 

( )( )( )ijk i i j j k kE X X Xσ μ μ μ⎡ ⎤= − − −⎣ ⎦  and obtain the mean and second central moment 

as 
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, , , ,
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=
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∂ ⎡ ⎤∂ ∂ ∂
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μ μ μμ

μ 2
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r
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α σ
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If the system is assumed to have a symmetric distribution such as multivariate normal 

distribution (Kurtz 1978), then the third central moment is zero and we can obtain closed-

form expressions for the mean and covariance equations, namely 

 2

,
1 , 1

( )1( )
2

sr NN
s r

r s r mn
r m n m nt X X

μ αα σ
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⎧ ⎫∂ ∂
≈ +⎨ ⎬∂ ∂ ∂⎩ ⎭
∑ ∑ μv μ  (B.11)
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∑ ∑ ∑ ∑μ μ μμ (B.1

 

Reference 

1. Lee, C.H., K.-H. Kim, and P. Kim, A moment closure method for stochastic 
reaction networks. The Journal of chemical physics, 2009. 130(13): p. 134107-15. 

2. Kurtz, T.G., Stoch. Proc. Appl. , 1978. 6: p. 223. 

 


	2.1 Biochemical systems theory (BST)
	2.2 Hybrid functional Petri net (HFPN)
	2.3.  Implement of BST models as Petri Nets
	2.4.  Representation of stochasticity in HFPN
	2.4.1. Construction of a discrete stochastic model according to reaction type
	2.4.2. Construction of a discrete stochastic model from a deterministic ODE model
	2.4.3. Construction of continuous stochastic models

	2.5 Approximation of various types of delays by ODEs
	2.5.1.  Approximation of multiple constant delays by ODEs
	2.5.2.  Approximation of distributed delay by ODEs
	2.5.3.  Approximation of time dependent delays by ODEs
	2.5.4.  Approximation of systems with random delay   

	3. Results
	4. Discussion
	Acknowledgments
	References
	Acknowledgments
	Constructing Stochastic Models from Deterministic Process Equations by Propensity Adjustment
	Constructing Stochastic Models from Deterministic Process Equations by Propensity Adjustment
	Jialiang Wu1, Brani Vidakovic 2, Eberhard Voit2,3§

	October 2011Abstract
	Background
	Results
	Conclusions

	Background 
	Methods
	3.Results 
	Discussion and Conclusion
	JW developed the mathematical derivations, designed and performed the simulation, and drafted the manuscript. BV contributed to the statistical reasoning and revised the manuscript. EV supervised the research and revised the manuscript. All authors read and approved the final manuscript. 
	Acknowledgements 
	Appendixes
	References
	1. Gillespie, D., Exact Stochastic Simulation of Coupled Chemical Reactions. J Phys Chem, 1977. 81(25): p. 2340 - 2361.
	2. Rao, C.V. and A.P. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. The Journal of chemical physics, 2003. 118(11): p. 4999-5010.
	3. Cao, Y., D.T. Gillespie, and L.R. Petzold, Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys., 2005. 206: p. 395.
	4. Gillespie, D.T., Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 2007. 58: p. 35-55.
	5. Tian, T. and K. Burrage, Stochastic models for regulatory networks of the genetic toggle switch. Proc Natl Acad Sci U S A, 2006. 103(22): p. 8372-7.
	6. Gomez-Uribe, C.A. and G.C. Verghese, Mass fluctuation kinetics: Capturing stochastic effects in systems of chemical reactions through coupled mean-variance computations. The Journal of chemical physics, 2007. 126(2): p. 024109-12.
	7. Lee, C.H., K.-H. Kim, and P. Kim, A moment closure method for stochastic reaction networks. The Journal of chemical physics, 2009. 130(13): p. 134107-15.
	8. Singh, A. and J. Hespanha. LogNormal Moment Closures for Biochemical Reactions. in In Proc. of the 45th Conf. on Decision and Contr. 2006.
	9. Milner, P., C.S. Gillespie, and D.J. Wilkinson, Moment closure approximations for stochastic kinetic models with rational rate laws. Mathematical Biosciences, 2011. 231(2): p. 99-104.
	10. Chevalier, M.W. and H. El-Samad, A rigorous framework for multiscale simulation of stochastic cellular networks. The Journal of chemical physics, 2009. 131(5): p. 054102-17.
	11. Voit, E.O., Computational analysis of biochemical systems: a practical guide for biochemists and molecular biologists. Vol. xii. 2000: Cambridge University Press.
	12. Savageau, M.A., Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. Journal of Theorectical Biology, 1969 a. 25(3): p. 365-9.
	13. Savageau, M.A., Biochemical systems analysis. A study of function and design in molecular biology. Vol. xvii. 1976: Addison-Wesley.
	14. Savageau, M., Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. Journal of Theoretical Biology, 1995. 176(1): p. 115-124.
	15. Savageau, M.A., Influence of fractal kinetics on molecular recognition. Journal of Molecular Recognition, 1993. 6(4): p. 149-157.
	16. Bajzer, Z., et al., Mathematical analysis of models for reaction kinetics in intracellular environments. Mathematical Biosciences, 2008. 215(1): p. 35-47.
	17. Neff, K.L., Biochemical reaction kinetics in dilute and crowded solutions: Predictions of macroscopic and mesoscopic models and experimental observations. 2010, Mayo Clinic: Rochester, MN.
	18. Neff, Kevin L., et al., Validation of Fractal-Like Kinetic Models by Time-Resolved Binding Kinetics of Dansylamide and Carbonic Anhydrase in Crowded Media. Biophysical journal, 2011. 100(10): p. 2495-2503.
	19. Chou, I.-C. and E.O. Voit, Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math. Biosc. , 2009. 219: p. 57-83.
	20. Walton, R.J., et al., Biochemical measurements in Paget's disease of bone. European Journal of Clinical Investigation, 1977. 7(1): p. 37-39.
	21. Koch, A.L., The logarithm in biology 1. Mechanisms generating the log-normal distribution exactly. Journal of Theoretical Biology, 1966. 12(2): p. 276-290.
	22. Limpert, E., W.A. Stahel, and M. Abbt, Log-normal Distributions across the Sciences: Keys and Clues. BioScience, 2001. 51(5): p. 341.
	23. Law, A.M. and W.D. Kelton, Simulation Modeling and Analysis. 3 ed. 2000, Boston: Mc.Graw Hill.
	24. Gillespie, D. and L. Petzold, Numerical Simulation for Biochemical Kinetics, in In System Modelling in Cellular Biology, Z. Szallasi, J. Stelling, and V. Periwal, Editors. 2006, MIT Press.
	25. Wolkenhauer, O., et al., Modelling and Simulation of IntraCellular Dynamics: Choosing an Appropriate Framework IEEE Transactions on NanoBioscience, 2004. 3: p. 200-207.
	26. Paulsson, J., O.G. Berg, and M. Ehrenberg, Stochastic focusing: Fluctuation-enhanced sensitivity of intracellular regulation. Proceedings of the National Academy of Sciences, 2000. 97(13): p. 7148-7153.
	27. Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-338.
	28. Bennett, M.R., et al., Transient Dynamics of Genetic Regulatory Networks. Biophysical journal, 2007. 92(10): p. 3501-3512.
	29. Segel, L.A., On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. , 1988. 50: p. 579-593.
	30. Michaelis, L. and M.L. Menten, Die Kinetik der Invertinwirkung. Biochem. Zeitschrift 1913. 49: p. 333-369.
	31. Savageau, M.A. and E.O. Voit, Recasting Nonlinear Differential-Equations As S-Systems - A Canonical Nonlinear Form. Mathematical Bioscience, 1987. 87: p. 83-115.
	Jialiang Wu, Eberhard O. Voit
	Jialiang Wu1, Eberhard O. Voit2,3§

	Authors' Contributions
	JW developed the mathematical derivations, designed and performed the simulation, and drafted the manuscript. EV supervised the research and revised the manuscript. Both authors read and approved the final manuscript. 
	The authors thank Dr. Kevin Neff for providing experimental data and for useful conversations about the binding of dansylamide to carbonic anhydrase. This work was supported in part by a Molecular and Cellular Biosciences Grant (EOV, PI) from the National Science Foundation. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring institutions.

